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a b s t r a c t

We present the open-source image processing software package PySAP (Python Sparse data Analysis
Package) developed for the COmpressed Sensing for Magnetic resonance Imaging and Cosmology
(COSMIC) project. This package provides a set of flexible tools that can be applied to a variety of
compressed sensing and image reconstruction problems in various research domains. In particular,
PySAP offers fast wavelet transforms and a range of integrated optimisation algorithms. In this paper
we present the features available in PySAP and provide practical demonstrations on astrophysical and
magnetic resonance imaging data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The ability to obtain high quality data in a short amount of
time or indeed to recover high resolution images from under-
sampled blurred and noisy data can significantly improve the
results of experiments potentially leading to new and exciting
scientific discoveries. While the benefits of the mathematical
methods that make this possible are relatively well known, robust
and easy-to-use software tools that implement these techniques
are extremely rare. The Compressed Sensing for Magnetic Reso-
nance Imaging and Cosmology (COSMIC) project (http://cosmic.
cosmostat.org/) was funded by the Fundamental Research Divi-
sion (DRF) at the French Alternative Energies and Atomic Energy
Commission (CEA) to provide precisely these tools.

COSMIC is a collaboration between two CEA groups with signal
processing expertise: NeuroSpin, specialists in Magnetic Reso-
nance Imaging (MRI), and CosmoStat, specialists in astrophysical
image analysis. There is significant overlap in these fields, espe-
cially for astrophysical radio imaging that, like MRI, collects data
in Fourier space. The primary output of this collaboration has
been the development of the Python Sparse data Analysis Package
(PySAP).

PySAP is an open-source software package written in Python
that provides highly optimised sparse image transforms and a
library of modular optimisation tools for solving linear inverse
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problems. While PySAP has been designed with specific appli-
cations to the MRI and astrophysics domains in mind, the ver-
satility of the software and the universality of the mathematical
techniques mean that it can also be applied to a variety of other
imaging domains such as microscopy, tomography and echogra-
phy.

Compared to existing inverse problem solving packages, such
as SPAMS (Mairal et al., 2009b,a, 2010; Jenatton et al., 2010) and
SigPy (Ong and Lustig, 2019), PySAP offers efficient implemen-
tations of specialised multiscale transforms. In particular, PySAP
provides undecimated wavelet transforms, which are well suited
to astrophysical images, and 3D wavelet transforms, which are
of particular interest for MR image processing (see Section 2.1).
PySAP also includes several detailed applications of these tools to
data to facilitate user understanding (see Section 3).

This paper is organised as follows. Section 2 provides a de-
tailed description of the structure and features of PySAP with
particular focus on the image transforms and optimisation tools.
Section 3 demonstrates practical applications of PySAP on MRI
and astrophysical data. Finally, conclusions and plans for the
future development of the package are presented.

2. PySAP features

In essence, the base PySAP package serves as a front-end
that comprises several specialised modules. PySAP provides a
simplified framework in which to combine these modules as well
as managing file IO, visualisation and exception handling.
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Fig. 1. Illustration of the structure of the PySAP package. The SPARSE2D and
ModOpt core libraries are represented in orange and red, respectively. The
various plug-in applications appear in blue. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

The core modules that provide the PySAP features are:

• Sparse2D: Sparse Image Transforms
• ModOpt: Modular Optimisation Tools
• Plug-ins

Fig. 1 illustrates the core structure of the PySAP package.
Each of these modules is described in detail in the following
subsections.

2.1. Sparse image transforms

The most essential tools for implementing compressed sensing
or sparsity in signal processing problems are efficient dictionaries
well suited to the data at hand. In practice, these dictionaries
correspond to a series of data transforms ranging from wavelets
to curvelets that can convert the data into a domain where the
majority of the information is concentrated in very few non-zero
coefficients, a concept called sparsity or compressibility.

Sparse2D is a C++ package, which forms part of iSAP (Interac-
tive Sparse Astronomical data Analysis Packages), that provides
a wide range of robust and efficient sparse transforms for 1D,
2D and 3D signals. In particular, the package includes a col-
lection of undecimated wavelet transforms (UWT) that provide
shift invariant properties for image reconstruction, such as the
starlet transform (Starck et al., 2007) or the 7/9 UWT. These
transforms are well documented in Starck et al. (2015). Sparse2D
also includes 2D1D and curvelets transforms, enabling the sparse
decomposition of various types of data. A full list of the available
transforms is provided in the Appendix. These software tools
have been extensively tested on astrophysical data producing
high quality results on a range of different topics (Bobin et al.,
2014; Leonard et al., 2014; Ngolè Mboula et al., 2015; Lanusse
et al., 2016). The fact that this package relies on a set of fixed
multiscale dictionaries means that the transforms are very com-
putationally efficient and are therefore ideally suited to on-line
MR image reconstruction (El Gueddari et al., 2019a).

PySAP provides Python bindings for the Sparse2D C++ libraries,
thus enabling fast and efficient implementation of the sparse
transforms inside of a Python environment. This allows these
tools to be more easily integrated into optimisation problems
without any loss of performance (see Section 2.2). Additionally,
through the PySAP interface, Sparse2D transforms can be applied
to MRI data separately on the real and imaginary parts.

In addition to Sparse2D, PySAP also includes all of the trans-
forms provided in PyWavelets (Lee et al., 2019).

2.2. Modular optimisation tools

Linear inverse problems, such as compressed sensing, are ill-
posed because they are under-determined, i.e. the number of
measurements is far below the number of image pixels. To cope
with this issue and make the inverse problem well posed, one
usually resorts to regularisation. The image solution is then ob-
tained as the minimiser of an optimisation problem. One of the
main features of PySAP is a series of modular optimisation tools
designed for solving linear inverse problems that comprise a
subpackage called ModOpt.

This package is particularly well suited for solving linear in-
verse imaging problems of the following form

y = Hx + n (1)

where y is the observed image obtained from the detector in
question, H is a degradation matrix that could constitute blurring,
sub-sampling, distortion, etc., x is the true image that one aims to
recover and n is noise.

ModOpt provides robust and extremely flexible implementa-
tions of cutting-edge optimisation algorithms such as Forward–
Backward, FISTA (Beck and Teboulle, 2009), Generalised
Forward–Backward (Raguet et al., 2013), Condat–Vũ (Condat,
2013; Vũ, 2013) and POGM′ (Kim and Fessler, 2018). For in-
stance, these algorithms have been compared for MR image
reconstruction in Ramzi et al. (2019). The flexibility of these im-
plementations is provided via means of Python class composition.
All of the proximity and linear operators as well as the gradient
utilised by a given algorithm can be provided as class instances
that inherit a parent structure to ensure smooth cohesion. The
modularity of this approach means that any potential bug can
be easily identified and fixed, thus ensuring a well maintained
and robust framework. Additionally, this structure facilitates the
future implementation of virtually any optimisation algorithm.

Predefined proximity operators are provided for implement-
ing sparse, low-rank and structurally sparse regularisation (i.e.,
ℓ1, nuclear and mixed norms, respectively) as well as a posi-
tivity constraint, which is commonly required in image analysis
problems. Tools are included that allow the automatic setting of
the regularisation parameters using the noise properties of the
observed data. New proximity operator instances can easily be
generated using the parent class. A list of the proximity opera-
tors currently available in ModOpt is provided in Table 1. This
structure includes a method that automatically calculates a given
operator’s contribution to the overall cost of the optimisation
problem at hand.

The linear operator parent class enables the use of any of
the sparse image transforms described in Section 2.1, in fact this
framework is flexible enough to allow the implementation of
virtually any custom transform. The structure of the this class
also requires the definition of the adjoint process for a given
transformation.

A standard gradient implementation of the form

∇F (x) = HT (Hx − y) (2)
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Table 1
List of proximity operators currently available in ModOpt. The k-support norm generalises the group-LASSO ℓ2,1
norm (Yuan and Lin, 2006) for imposing structured sparsity with overlapping groups, typically in the context of
calibrationless MR image reconstruction. A particular case of Ordered Weighted L1 norm (OWL) that implements
structured sparsity is OSCAR regularisation (Bondell and Reich, 2008; El Gueddari et al., 2019b).
Proximity operator Application

Positivity Image analysis
ℓ1 Minimisation Sparse regularisation
ℓ∗ Minimisation Low-rank regularisation
ℓ2 Minimisation Ridge regularisation
αℓ1 + βℓ2 Minimisation (α, β ≥ 0) Elastic-net regularisation
Ordered weighted ℓ1 norm (Zeng and Figueiredo, 2014) ℓ∞-based Structured sparsity regularisation
k-support norm (Argyriou et al., 2012) ℓ2-based Structured sparsity regularisation

is included, where F (x) is a convex function of the form F (x) =
1
2∥Hx − y∥2

2. The parent class structure ensures that the gradient
required for a given inverse problem can be easily implemented.
As with the proximity operators, the gradient’s contribution to
the total cost is built into the class structure.

A cost function class is also provided that automatically sums
up the contributions from the proximity and gradient operators.
This class has a built-in framework to test for convergence up to
a given tolerance.

Finally, a reweighting class is provided to counteract the
bias introduced into a given solution owing to the use of soft-
thresholding in sparse regularisation. At present, the method
of Candès et al. (2008) is included.

The combination of these tools enables the user to very quickly
prototype robust codes for tackling a variety of inverse imaging
problems.

2.3. Plug-ins

PySAP also provides application specific plug-ins. In this mod-
ule algorithms and operators from ModOpt can be combined with
Sparse2D transforms to develop tools for a given application. The
objective being to produce user-friendly functions, designed to
solve well defined problems, that can be applied directly to data.

At present, this module contains plug-ins that demonstrate
the applicability of PySAP to astrophysical and MRI data (pysap-
astro and pysap-mri, respectively). For example, the MRI plug-
in pysap-mri (El Gueddari et al., 2020) adds the ability to deal
with non-Cartesian data using non-uniform or non-equispaced
FFT tools, while the astrophysics plug-in provides easy-to-use
tools for denoising or deconvolving survey images. A specific
plug-in, called pysap-data hosts the data sets used in the ex-
amples provided, while another one, called pysap-tutorial,
contains materials for hands-on sessions. In the near future, two
supplementary plug-ins will be released for other imaging tech-
niques such as electron tomography (pysap-comset) (Lin et al.,
2020), and electron microscopy (pysap-emicro).

The plug-in framework has been designed to promote collab-
oration by providing a template for creating new plug-ins for
virtually any imaging domain.

3. Practical applications

3.1. Astrophysical images

One straightforward application of PySAP on astrophysical
data is to the problem of galaxy image deconvolution. Astro-
physical images obtained with optical telescopes are subject to
a blurring caused by internal factors, such as imperfections in
the optical system, and external factors, such as the atmosphere
for ground based instruments. The sum of these aberrations is
commonly referred to as the Point Spread Function (PSF).

Removing the effects of the PSF from noisy observations
amounts to solving a non-trivial inverse problem that requires

the use of regularisation owing to the ill-conditioned nature of
the degradation matrix, which corresponds to convolution with
the PSF in this case. This problem can be solved using sparse reg-
ularisation following the same prescription described in Farrens
et al. (2017) using PySAP. A deconvolution example is provided
in PySAP that demonstrates this process in a few lines of code.
This example takes a COSMOS (Koekemoer et al., 2007; Scoville
et al., 2007b,a) galaxy image that has been processed to remove
noise (see Farrens et al., 2017) as the true image that one aims to
recover. An observation is then simulated by convolving this im-
age with an anisotropic PSF and adding white Gaussian noise. This
example performs deconvolution using the Condat–Vũ algorithm.
An isotropic undecimated wavelet transform from Sparse2D is
used for the linear operator, and a positivity constraint and soft-
thresholding of the sparse coefficients are used as the proximity
operators. The results of this example are shown in Fig. 2.

Another application is simply removing noise from observa-
tions. This is a particularly challenging problem when the object
in question contains important high-frequency spatial features
that need to be preserved. Fig. 3 presents the results of denoising
an image of the galaxy NGC2997 using PySAP. For this example
white Gaussian noise is added to the clean image and then the
same isotropic undecimated wavelet transform from Sparse2D is
used to decompose the noisy image, which is in turn thresholded
by weights learned from the noisy image itself.

Note that the data used for the examples presented in this
paper are provided in PySAP (in the pysap-data plug-in). There-
fore, all of the example outputs can be reproduced exactly by
users.

3.2. MRI

MRI is probably one of the most successful applications of
compressed sensing. The ability to reconstruct high-fidelity MR
images from massively undersampled data in a short amount of
time is of paramount importance. This is achievable as the data
collected in the Fourier domain (called k-space in MRI) may be
acquired using variable density sampling (VDS) along a small
number of trajectories (or shots), either Cartesian or not (e.g.
radial (Jackson et al., 1992), spiral (Meyer et al., 1992) or more
custom like Sparkling (Lazarus et al., 2017, 2019)). The images
can then be reconstructed using state-of-the-art optimisation
algorithms. The idea is to take advantage of these time-saving
strategies, not only to increase spatial resolution in anatomical
imaging, but also to reduce sensitivity to motion. Importantly,
PySAP is able to deal with both single and multi-channel 2D
and 3D k-space data using GPU versions of NFFT operators. 3D
VDS may be particularly relevant to improve the spatio-temporal
resolution in functional MRI.

Take, for example, the problem of compressed sensing parallel
imaging reconstruction. For this example let L be the number
of coils used to acquire the NMR signal, n the image dimension
and N = n × n be the number of pixels of a 2D complex-
valued image x ∈ CN to be reconstructed and M the number of
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Fig. 2. Example of galaxy image deconvolution using PySAP. Top left: True galaxy image, Top right: observed galaxy image, Bottom left: deconvolved galaxy image,
Bottom right: deconvolution residual.

samples collected per channel during acquisition. We denote by
yℓ ∈ CM the complex-valued data recorded by the ℓth channel,
Sℓ ∈ CN×N the corresponding diagonal sensitivity matrix. This
matrix Sℓ reflects how well the ℓth receiver coil captures part of
the object x. Let F be the Fourier transform and Ω ⊂ {1, . . . ,N}

the sampling pattern in the k-space, with |Ω| = M ≪ N . The
CS-PI acquisition model thus reads:

yℓ = FΩSℓ x + nℓ, ∀ℓ = 1 : L, (3)

where nℓ is additive zero-mean Gaussian noise of variance σ 2
ℓ ,

which can be characterised by a separate scan (without RF pulse)
considering the same bandwidth as the prospective CS acquisi-
tion. In the case of Cartesian undersampling, FΩ = ΩF where Ω
is a binary sampling mask with M non-zero entries and F is the
fast Fourier transform (FFT). In the case of non-Cartesian under-
sampling, FΩ is the Non-equispaced Fourier transform (NFFT). In
the case where one assumes the sensitivity matrices (Sℓ)Lℓ=1 are
known in advance, this problem can easily be solved using sparse
regularisation following the same prescription described in Chaari
et al. (2011), Guerquin-Kern et al. (2011) using PySAP in just a
few lines of code. In the context of VDS, one may extract low
frequency information from k-space data (yℓ)Lℓ=1 to estimate the
sensitivity maps (Sℓ)Lℓ=1 prior to reconstruction: this is called self-
calibrated MR image reconstruction and has been implemented
in El Gueddari et al. (2018).

Several example applications to MR data are provided in the
PySAP package. A first example is shown in Fig. 4. It shows the
reconstruction of an MR image from retrospectively undersam-
pled k-space data. The original Cartesian data were collected
in vivo on a healthy volunteer at 7 Tesla (Magnetom Siemens
scanner, Erlangen, Germany) using a 32-channel (Nova Medical
Inc., Washington, MA, USA) coil (L = 32) and a 2D T2*-weighted

GRE sequence (see details in Lazarus et al. (2019)). To illustrate CS
reconstruction algorithms, we actually used the reference image
obtained as the square root of the sum of squares of 32 chan-
nels (see Fig. 4 top-left), which we retrospectively undersample.
In that context, we emulated a single receiver coil to get rid of
the estimation of sensitivity maps. Note however that specific
algorithms are provided to extract these sensitivity matrices and
perform image reconstruction in the dedicated plug-in for MRI as
described in El Gueddari et al. (2018, 2019b).

For educational purposes, we first used a Cartesian mask that
implements variable density sampling along the phase encod-
ing (vertical) direction. We kept only Nc = 98 phase encoding
lines out of n = 512, leading to an undersampling factor R = N/M
equal to the acceleration factor in time AF = n/Nc = 5.22.
The FISTA algorithm Beck and Teboulle (2009) was used for op-
timisation purposes with sparsity promoted with the decimated
symmlet 8 transform. The image reconstructed in Fig. 4 using this
strategy outperforms the zero-filled inverse FFT by almost 0.1 in
terms of structural similarity (SSIM) score (0.91 vs 0.82).

A second example is depicted in Fig. 5, where retrospective
radial undersampling was applied with only Nc = 64 shots out
of n = 512 leading to a downsampling factor of R = AF = 8.
The sparsity was promoted using an anisotropic undecimated
wavelet transform from Sparse2D. The image reconstructed using
this strategy outperforms the zero-filled inverse NFFT by 0.25 in
terms of SSIM score (0.92 vs 0.67).

Note that as in these examples we only performed retrospec-
tive undersampling, R = AF, however, in prospective acceleration,
one may gain in image quality using oversampling over each shot
which leads to R < AF. Some codes spinets can be found in the
PySAP documentation gallery: https://python-pysap.readthedocs.
io/en/latest/auto_gallery/gallery.html.

https://python-pysap.readthedocs.io/en/latest/auto_gallery/gallery.html
https://python-pysap.readthedocs.io/en/latest/auto_gallery/gallery.html
https://python-pysap.readthedocs.io/en/latest/auto_gallery/gallery.html
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Fig. 3. Example of galaxy image denoising using PySAP. Top left: True galaxy image, Top right: observed galaxy image, Bottom left: denoised galaxy image, Bottom
right: denoising residual.

3.3. Gadgetron

Gadgetron natively supports Python packages and therefore
PySAP can easily be installed on any MRI scanner where the
Gadgetron framework is in place.

4. Conclusions

In this paper we have presented the image processing package
PySAP, its principal features and example applications to MR and
astrophysical images. In particular, examples demonstrate how
PySAP can be applied to image processing problems such as de-
noising, deconvolution and compressed sensing employing state-
of-the-art reconstruction algorithms and wavelet transforms. In
each case the plug-in framework provides easy-to-use tools for
solving these problems for specific applications.

The flexibility and modularity of this package permit a wide
range of possible future developments. In particular, we aim to
continue to add new and cutting-edge optimisation algorithms,
reweighting methods, etc. We additionally aim to add further fea-
tures for handling 4D data and optimising the computation time
by exploring GPU implementations. Another important aspect to
which we plan to dedicate effort is to integrating machine and
deep learning techniques into the existing architecture.

One of the most exciting uses of PySAP comes from the
Gadgedtron implementation. The universality of this system and
the growing community mean that PySAP can readily be used
at MRI scanners around the world, potentially leading to some
fascinating developments in the biomedical imaging domain.

Finally, we intend to seek out new applications of this software
in a variety of different fields. In fact, work has already begun on

developing a PySAP plug-in for electron tomography and electron
microscopy.

Reproducible research. In the spirit of reproducible research PySAP
is made publicly available and fully open source. Documentation
and installation instructions are available on the PySAP web-
site (https://python-pysap.readthedocs.io/). The authors kindly
request that any academic publications that make use of PySAP
cite this paper.
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Fig. 4. Cartesian MRI decimated wavelet-based reconstruction. Top left: Cartesian reference, Top right: K-space mask, Bottom left: Zero-filled reconstruction (SSIM =

0.82), Bottom right: Decimated wavelet based reconstruction (SSIM = 0.91).

Appendix. Sparse2D transforms

A.1. 1D transforms

1. Linear wavelet transform: a trous algorithm
2. B1spline wavelet transform: a trous algorithm
3. B3spline wavelet transform: a trous algorithm
4. Derivative of a b3spline: a trous algorithm
5. Undecimated Haar wavelet transform: a trous algorithm
6. Morphological median transform
7. Undecimated (bi-) orthogonal wavelet transform
8. Non orthogonal undecimated transform
9. Modified positive B3spline wavelet transform: a trous al-

gorithm
10. Pyramidal b3spline wavelet transform
11. Pyramidal median transform
12. Morlet’s wavelet transform
13. Mexican hat wavelet transform
14. French hat wavelet transform
15. Gaussian Derivative wavelet transform
16. (bi-) orthogonal wavelet transform

17. (bi-) orthogonal transform via lifting scheme
18. Wavelet packets
19. Wavelet packets from lifting scheme
20. Wavelet packets using the a-trous algorithm)
21. Pyramidal linear wavelet transform

A.2. 2D and 2D1D transforms

1. linear wavelet transform: a trous algorithm
2. bspline wavelet transform: a trous algorithm
3. wavelet transform in Fourier space
4. morphological median transform
5. morphological minmax transform
6. pyramidal linear wavelet transform
7. pyramidal bspline wavelet transform
8. pyramidal wavelet transform in Fourier space: algo 1 (diff.

between two resolutions)
9. Meyer’s wavelets (compact support in Fourier space)

10. pyramidal median transform (PMT)
11. pyramidal laplacian
12. morphological pyramidal minmax transform
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Fig. 5. Non-cartesian MRI undecimated wavelet-based reconstruction. Top left: Cartesian reference, Top right: K-space mask, Bottom left: Zero-filled reconstruction
(SSIM = 0.67), Bottom right: Undecimated wavelet based reconstruction (SSIM = 0.92).

13. decomposition on scaling function
14. Mallat’s wavelet transform (7/9 filters)
15. Feauveau’s wavelet transform
16. Feauveau’s wavelet transform without undersampling
17. Line Column Wavelet Transform (1D+1D)
18. Haar’s wavelet transform
19. half-pyramidal transform
20. mixed Half-pyramidal WT and Median method (WT-HPMT)
21. undecimated diadic wavelet transform (two bands per

scale)
22. mixed WT and PMT method (WT-PMT)
23. undecimated Haar transform: a trous algorithm (one band

per scale)
24. undecimated (bi-) orthogonal transform (three bands per

scale)
25. non orthogonal undecimated transform (three bands per

scale)
26. Isotropic and compact support wavelet in Fourier space
27. pyramidal wavelet transform in Fourier space: algo 2 (diff.

between the square of two resolutions)

28. Fast Curvelet Transform
29. Wavelet transform via lifting scheme
30. 5/3 on line and 4/4 on column
31. 4/4 on line and 5/3 on column

A.3. 3D transforms

1. (bi-) orthogonal transform
2. (bi-) orthogonal transform via lifting scheme
3. A trous wavelet transform

A.4. Curvelet transforms

1. RectoPolar Ridgelet Transform using a standard bi-
orthogonal WT

2. RectoPolar Ridgelet Transform using a FFT based Pyramidal
WT

3. RectoPolar Ridgelet Transform using a Pyramidal WT in
direct space

4. Finite ridgelet transform
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5. Slant Stack Radon transform + FFT based pyramidal WT.
6. Slant Stack Radon transformand + bi-orthogonal WT
7. Slant Stack Radon transformand + pyramidal WT in direct

space
8. Slant Stack Radon transformand + Undecimated Starlet WT
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