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Synopsis
Compressed sensing theory reduces lengthy acquisition time in MRI at the expense of computationally demanding iterative
reconstruction. Usually, reconstruction is performed offline once all the data have been collected. Here, we introduce an online
CS reconstruction framework that interleaves acquisition and reconstruction steps in a convex setting and permits the delivery of
intermediate images on the scanner console during acquisition. In particular, the sum of acquisition and reconstruction times is
reduced without compromising image quality. The gain of this strategy is shown both on retrospective Cartesian and prospective
non-Cartesian under-sampled ex-vivo baboon brain data at 7T with an in-plane resolution of 400 m.

Introduction
Magnetic resonance imaging has proved its versatility to probe soft tissues in the human body, especially it addresses a large set of
contrasts that bring complementary information on the underlying organ to facilitate diagnosis. However MRI acquisition remains slow in
particular in the high-resolution T2* imaging context: the use of long echo and repetition times makes both the acquisition of each spoke and
the interval between consecutive spokes lengthy. For the last decade, compressed sensing (CS) theory  has tackled this issue by
massively under-sampling k-space data along feasible trajectories . In this setting, MR image reconstruction has become more challenging
since iterative. In this work, we propose an online strategy where acquisition and reconstruction are interleaved. This approach is based on
a batch formulation of the reconstruction problem and is compatible with the Gadgetron  framework.

Theory
Problem Statement. Let us define the offline reconstruction problem solved in CS. Let , ,  and  being respectively the image
dimension, number of shots used to acquire the NMR signal ( ), the number of samples per shots and the recovered image.  will
define a Wavelet Transform . The offline reconstruction problem reads as follows:

For an online implementation of CS reconstruction, we introduce  the number of batches,  the number of shots per batch and  the
number of iteration per batch. The k-space support of the -batch will be defined as  where  is the  shot
support. The online reconstruction problem reads as follows:

 and  control the sparsity level. The two formulations are equivalent for . Each newly available batch has to
be taken into account, which leads to the following constraint:

To ensure convergence, the last iteration number will be large enough. In terms of optimization, we implemented a primal-dual algorithm
summarized in Fig.1.

Experiments & Results
Parameter setting. A T2*-weighted ex-vivo baboon brain was acquired on a 7T system with in-plane resolution of  and 3mm slice
thickness, a , a base resolution of .The acquisition parameters were set as follows:  (for 11
slices), ms and . The decimated bi-Orthogonal Wavelet Transform with 4 decomposition scale was used as
sparsifying transform and  was set retrospectively. The final maximal number of iteration is set to 200. All experiments were run on a
machine with 128 GB of RAM and an 8-core (2.40 GHz) Intel Xeon E5-2630 v3 Processor and the code have been developed in python
using PySAP package.

Retropsective Cartesian sampling. The sampling mask composed of 187 lines of 512 samples is illustrated in Fig.2. The 12 central lines
were collected first while the others were acquired in a pseudo-random order. We used the FFT, which leads to . The batch
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size was tested over a discrete set of values,  shots/batch. The evolution of the performance was quantified using
the SSIM  score. The results are illustrated in Fig.3 (a), and Fig.2 represents the reconstruction at the end of acquisition i.e. at 92s.

Propsective non-Cartesian sampling. A modified 2D T2*-weighted GRE sequence was implemented based on the multi-shot Sparkling
trajectories  with  and , an acceleration factor  in time and an under-sampling factor . The sequence was
implemented using a golden angle strategy (i.e.  between two shots) and the NFFT  was used. In this setting, ,
hence . The sets of batch size parameters are summarized in Table1. The SSIM evolution is given Fig.3 (b), and Fig.4
represents the reconstruction at the end of the acquisition (21.5s from the beginning of the acquisition). Despite the slowness of the NFFT,
the gain is significant.

Conclusion & Discussion
In this work we proposed a framework for online reconstruction from segmented under-sampled data. We demonstrated its advantages and
application to T2*-weighted high-resolution 2D imaging both on Cartesian and non-Cartesian sampling schemes. In terms of reconstruction,
the proposed method converges to the same image as the offline solution. Additionally this approach delivers a reliable intermediate MR
image during acquisition. This new reconstruction framework is compatible with the Gadgetron  implementation, which makes it appealing
for clinical use of CS in daily routine.
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Table1. Setting of online reconstruction parameters.

Fig.1. Adaptation of the Condat -Vù  sequence for online reconstruction. , and the hyper-parameters are set line 3. and 4. with
 the Lipschitz constant associated to the spectral norm of : . In practice for Cartesian case 

and for non-Cartesian case, we will evaluate the norm using the power iteration method .

Fig.2. Online reconstructed Cartesian MR images (top) and their respective zooms (bottom) at the end of the acquisition for different batch
sizes.

Fig.3. (a) Evolutaion of the SSIM score for the diferent batch size on the retrospective Cartesian data. (b) Evolution of the SSIM score for
the differents hyper-parameters set-up on prospective non-Cartesian data.

Fig.4. Partial solution obtained at the end of the acquisition (t=21.5s form the beginning of the acquisition) and their respective zoom
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