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Abstract

Compressed sensing combined with parallel imaging has allowed significant reduction in
MRI scan time. However, image reconstruction remains challenging and common meth-
ods rely on a coil calibration step. In this work, we focus on calibrationless reconstruction
methods that promote group sparsity. The latter have allowed theoretical improvements
in CS recovery guarantees. Here, we compare the performances of several regularization
terms (group-LASSO, sparse group-LASSO and OSCAR) thatdefine with the data con-
sistency term the convex but non-smooth objective function to be minimized. The same
primal-dual algorithm is used to perform this minimization. Our results demonstrate that
OSCAR-based reconstruction is competitive with state-of-the-art `1-ESPIRiT.

Introduction

Compressed sensing (CS) theory has made a breakthrough in Magnetic Resonance Imaging (MRI)

since it has unlocked one of the major issues in MRI, namely the slow data acquisition. In the

high resolution setting, CS must be combined with parallel imaging (PI) to preserve high signal-

to-noise ratio, leading to harder reconstruction problems. In the existing CS-PI literature, most

algorithms reconstruct a single full field-of-view MR image using a (self-) calibration step that

1



estimates the coil sensitivity maps. In this work, we explore a new formulation based on struc-

tured group sparsity. Compared to usual mixed-norm regularization such as group-LASSO (1)

and sparse group-LASSO (2), the OSCAR formulation (3) is implemented for the first time for

CS-PI image reconstruction. On prospective non-Cartesian CS-PI 7T data, we show that our

approach reaches similar image quality to `1-ESPIRIT

Theory

General problem statement. Let N , L and M being respectively the image resolution, the

number of channels and the number of k-space measurement. We denote y = [y1, . . . , yL] ∈

CM×L the acquired NMR signal and x = [x1, . . . , xL] ∈ CN×L be the reconstructed MR

images. The image reconstruction problem reads as follows:

x̂ = arg min
x∈CN×L

{1

2

L∑
`=1

σ−2
` ‖fΩ(x`)− y`‖2

2 + g(Tx)
}
, (1)

where fΩ is the forward under-sampling Fourier operator. T ∈ CNΨ×N is a linear operator

related to a multiscale decomposition Ψ ∈ CNΨ and g is the joint sparsity promoting term.

Group LASSO.

We define z = [z1, . . . , zL] ∈ CNΨ×L, with z` ∈ CNΨ the wavelet coefficients composed

of S sub-bands having Ps coefficients each. For z ∈ CNΨ×L, the group-LASSO regularization

is given by:

gGL(z) = ‖z‖1,2 =
S∑
s=1

λγsc Ps∑
p=1

√√√√ L∑
`=1

|zsp`|2
 (2)

where zsp` is the pth wavelet coefficient of the sth sub-band (in the sc-scale) for the `th coil. For

a given s and p, the proximity operator reads:

(
proxλγsc‖·‖1,2(z)

)
sp`

=

{
zsp`

(
1− λγsc

αsp

)
, if αsp ≥ λγsc

0 , otherwise
(3)
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with αsp =
√∑L

`=1 |zsp`|2. The hyper-parameters λ > 0 and γ > 0 enables a sc-scale depen-

dent regularization according to a power-law behavior (4).

Sparse group-LASSO. On top of inter-group sparsity, the sparse group-LASSO imposes

intra-group sparsity too:

∀z ∈ CNΨ×L, gsGL(z) = gGL(z) + µ ‖z‖1 (4)

The proximity operator of gsGL corresponds to the composition of the proximity operator of the

group-LASSO Eq. (3) and the soft-thresholding as established in (2).

Octogonal Shrinkage and Clustering Algorithm for Regression. Instead of using the

`2 norm to define the groups, one can infer a group structure using a pairwise `∞ norm while

imposing the `1 norm as a sparsity constraint. This leads to the OSCAR regularization that

reads as follows:

gOSCAR(z) =
S∑
s=1

λ

[
PsL∑
j=1

|zsj|+ γ
∑
j<k

max{|zsj|, |zsk|}

]

=
S∑
s=1

λ

[
PsL∑
j=1

(γ(j − 1) + 1) |zsj|↓

]
(5)

where z↓ ∈ CNΨ×L is the inter sub-band and channels wavelet coefficients sorted in decreasing

order , i.e.: ∀s ∈ N, |zs1| ≤ · · · ≤ |zsPsL|. The proximity operator is also explicit (5, Eq. (24)).

Primal-dual optimization algorithm. To solve the image reconstruction problem, we im-

plemented the primal-dual optimization method proposed by Condat-Vú (6,7) and summarized

Fig. 1. As all these penalty terms are prox-friendly, one can also use any proximal splitting

algorithm.

Experiments & Results

Acquisition parameters. A modified 2D T2*-weighted GRE sequence (8) composed of 34

spokes (acceleration factor of 15 in time) and 3072 samples each (under-sampling factor of 2.5).
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The acquisition parameter were set as follows: FOV= 200× 200mm2, slice thickenss of 3mm,

TR = 550ms (for 11 slices), TE= 30ms, BW=100kHz and FA= 25◦.

Reconstruction parameters. All the hyper-parameters were set using a grid search proce-

dure and the undecimated bi-Orthogonal wavelet transform with 4 scale of decomposition was

used as sparsifying transform. We compared the Sum-Of-Squares for the gLASSO, sgLASSO

and OSCAR regularizations.

Results & Discussion.

Fig. 2 compares the results of the SOS for the different penalizations, in terms of SSIM

and image quality. It suggests that the group structure is more important than the intra group

sparsity since OSCAR performs better.

Fig. 4 shows the coil-by-coil images, the structure is better preserved by the OSCAR regu-

larization at the expense of low SNR valuue as seen on Fig. 3 (first row)

Conclusion

Since the results are equivalent for OSCAR and the `1-ESPIRiT solution this tends to prove

that the information of sensitivity is inferred via a well-suited group structure. Moreover recon-

struction based on group-sparsity promotion achieve tighter recovery guarantee (9). OSCAR

regularization tends to spread the SSIM scores of coil specific MR images whereas the group-

LASSO and its sparse variation are more concentrated.

Figures
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Figure 1: Condat-Vù algorithm. The hyper-parameter were set as follow, τ := 1
β

, κ := β
2‖T ‖2

with β the Lipschitz constant of the norm of fΩ.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (o) (p) (q) (r)

Figure 2: (a) Cartesian reference. (b) Reconstruction with no regularization term (SSIM =
0.847, pSNR = 26.50). (c) Reconstruction based on the group-LASSO penalty (SSIM = 0.864,
pSNR = 26.92). (d) Reconstruction based on the sparse group-LASSO penalty (SSIM = 0.851,
pSNR = 26.77). (e) Reconstruction based on OSCAR penalty (SSIM = 0.875, pSNR = 30.49)
(f) reconstruction based on `1-ESPIRiT (SSIM = 0.874, pSNR = 28.32). (g)-(l) Respective
zooms in the red square, (m)-(r) zoom of the difference between the Cartesian referance and
the reconstructed image.
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Figure 3: Assessment of the SSIM score per channel.
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No reg. Group-LASSO Sparse GL OSCAR
SSIM= 0.630 SSIM= 0.680 SSIM= 0.672 SSIM= 0.646

SSIM= 0.846 SSIM= 0.880 SSIM= 0.863 SSIM= 0.893

Figure 4: From left to right, no penalization, group-LASSO solution, sparse group-LASSO and
OSCAR solutions for two different channels (each row represent a different channel), the first
row is a low SNR.
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