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Abstract

Compressed sensing theory reduces lengthy acquisition time in MRI at the expense of
computationally demanding iterative reconstruction. Usually, reconstruction is performed
offline once all the data have been collected. Here, we introduce an online CS reconstruc-
tion framework that interleaves acquisition and reconstruction steps in a convex setting and
permits the delivery of intermediate images on the scanner console during acquisition. In
particular, the sum of acquisition and reconstruction times is reduced without compromis-
ing image quality. The gain of this strategy is shown both on retrospective Cartesian and
prospective non-Cartesian under-sampled ex-vivo baboon brain data at 7T with an in-plane
resolution of 400µm.

Introduction

Magnetic resonance imaging has proved it versatility to probe soft tissues, especially it ad-

dresses a large set of contrast that brings complementary information on the underlying organ

to facilitate diagnosis. However acquisition in MRI is slow in particular when in comes to T2*-

weighted images in a high resolution context. Compressed Sensing (CS) theory tackle this issue

at the expense of complex and slow reconstruction. In this work we proposed a new framework
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where acquisition and reconstruction are interleaved, it is based on a batch formulation of the

reconstruction problem that allows to reduce the overall acquisition and reconstruction time.

Therefore a partial solution could be given during acquisition. This new reconstruction frame-

work is compatible with a Gadgetron (1) formulation, which leads to clinical use of Compressed

Sensing.

Theory

Problem statement. Let us first define the offline reconstruction problem solved in CS. Let

N , S, C and x being respectively the image dimension, number of shots used to acquire the

NMR signal (y ∈ CCS), the number of shots and the recovered image. T will define a Wavelet

Transform (2). The offline reconstruction problem reads as follows:

x̂ = argmin
x∈CN

{
1

2
‖fΩ (x)− yΩ‖2

F + λ1 ‖Tx‖1

}
(1)

For an online implementation of CS reconstruction, we introduce nb the number of batches and

sb the number of shots per batch and nj the number of iteration per batch. The k-space support

of the jth-batch will be defined as Ωj = ∪0≤j≤nb
Γi where Γi is the ith shot support. The online

reconstruction reads as follows:

∀j ∈ N, 0 leqi ≤ nb, x̂
j = argmin

x∈CN

{
1

2

1

#Ωj

‖fΩj
(x)− yΩj

‖2
F + λ2 ‖Tx‖1

}
(2)

λ1 and λ2 controls the sparsity level. The two formulation are equivalent for λ2 = λ1/#Ωnb
.

Each newly available batch has to be taken into account, this leads to the following constraint

on the number of iteration per batch:

∀j ∈ N, 0 < j ≤ nb − 1, nj × Tit ≈ sb × TR (3)
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To ensure convergence, the last batch will have a number of iteration large enough. In terms of

optimization, we implemented a primal-dual (3, 4) optimization summarized in Fig. 1

Results

Parameters setting. A T2*-weighted ex-vivo baboon brain was acquired on a 7T system

with in-plane resolution of 400µm and 3mm slice thickness, a FOV of 20.4cm, a base resolu-

tion of 512×512. The acquisition parameters were set as follows: TR=550ms (for 11 slices),

TE=30ms and FA=25◦. The decimated bi-Orthogonal Wavelet Transform with 4 decomposi-

tion scale was used as sparsifying transform and λ2 was set retrospectively. All experiments

were run on a machine with 128 GB of RAM and an 8-core (2.40 GHz) Intel Xeon E5-2630 v3

Processor and the code have been developed in python using PySAP package.

Retrospective Cartesian sampling The sampling mask composed of 187 lines of 512 sam-

ples is illustrated Fig .2. The 12 central line were collected first while the others are acquired

in a pseudo-random order. We used the FFT, in this set-up, Tit = 0.12s. The batch size was

tested over a discrete sets of value, sb = 2, 23, 46 and 92 shots/batch. The evolution of the

performance of the reconstruction was evaluated thanks to the SSIM index (5). The results are

illustrated Fig. 3 (a), and Fig. 2 represent the reconstruction by the end of acquisition i.e. at 92s.

Prospective non-Cartesian sampling A modified 2D T2*-weighted GRE sequence was

implemented based on the multi-shot Sparkling trajectories (6) with S = 43 and C = 3072,

an acceleration factor of 12 in time and an under-sampling factor of 0.55. The sequence was

implemented using a golden angle strategy(i.e. ≈ 130◦ between two shots) and the NFFT (7)

was used. In this setting, Tit = 0.25s, hence nk = sb × 2. The sets of batch size parameters

are summarized Table 1. The evolution of the SSIM score is given Fig. 3 (b), and Fig. 4

represents the reconstruction at the end of the acquisition (i.e. at 21.5s from the beginning of

the acquisition). Despite the slowness of the NFFT, the gain is significant.

3



Conclusion & Discussion

In this work we proposed a framework for online reconstruction from segmented under-sampled

data. We demonstrate its advantages and application to T2*-weighted high-resolution 2D imag-

ing both on Cartesian and non-Cartesian sampling schemes. In terms of reconstrcution, the

proposed method converges to the same image as the offline solution. Additionally this ap-

proach delivers a reliable intermediate MR image during acqisition. This new reconstruction

framework is compatible with the Gadgetron (1) implementation, which makes it appealing for

clinical use of CS in daily routine.

Figures

Table 1: Setting of online reconstruction parameters.
Batch size sb Iterations nj Number of iterations nb

Offline [43] [200] 1
H1 [5, 15, 29, 43] [22, 30, 30, 200] 4
H2 [7, 14, 21, 28, 35, 43] [15, 15, 15, 15, 17, 200] 6
H3 [4, 8, 12, ..., 40, 43] [8, 8, 8, ..., 8, 6, 200] 11
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(a) (b)

Figure 3: (a) Evolutaion of the SSIM score for the diferent batch size on the retrospective
Cartesian data. (b) Evolution of the SSIM score for the differents hyper-parameters set-up on
prospective non-Cartesian data.
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Cartesian H1 H2 H3
reference SSIM= 0.752 SSIM= 0.835 SSIM= 0.809

Figure 4: Partial solution obtained at the end of the acquisition (t=21.5s form the begining of
the acquisition) and their respective zoom
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