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1. Introduction
Magnetic resonance imaging (MRI) is one of the most powerful imaging techniques for examining the human body since it allows early and accurate
diagnosis of pathologies. Although high magnetic field systems (≥ 3 Tesla) enable increased spatial resolution, long scan times and motion sensitivity
continue to impede the exploitation of HR-MRI. To circumvent that problem, Compressed Sensing (CS) was introduced [5], among other techniques, to
reduce the acquisition time, taking advantage of the structure of MR images. However, the time gained on acquisition has been lost on reconstruction
as sparse recovery amounts to iteratively solving a linear inverse problem. The motivation to reduce the time required for image reconstruction is the
following: the MRI physician needs to analyze the reconstructed image to know if there has been some movement causing some motion artifacts, and
therefore take the decision to rerun the exam. Thus, decreasing reconstruction time would mean reducing the overall duration of the MRI exam. This
would also help approaching the goal of real-time MRI, which is useful for monitoring cardiovascular procedures for example. This becomes substantially
important when going from 2D to 3D to 4D (3D + time or contrast) with very high-resolution, namely 1024x1024 or 250 μm in plane resolution at
ultra-high fields (≥ 7 Tesla). The recent development [4] of acceleration techniques for FISTA, an algorithm to solve the reconstruction problem, could
help improve the reconstruction speed.

2. The reconstruction problem

arg min
x∈Cn×n

J (x) = 1
2‖y − FΩx‖22 + λ‖Ψx‖1 (1)

where x denotes the sought complex-valued MR
image, n is its dimension, FΩ is the Fourier op-
erator, possibly non-uniform and under-sampled
over the non-Cartesian set Ω, y the MR Fourier
data also called k-space samples. λ refers to the
regularization parameter and Ψ to the wavelet
decomposition operator as the MR image is as-
sumed to be sparse (at least compressible) in the
wavelet basis [5].
For ease of notation, we denote: F (x) = 1

2‖y −
FΩx‖22 and R(x) = λ‖Ψx‖1

4. Data
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(a) 2D MRI phantom (512× 512)
(b) ex-vivo Cartesian baboon brain T∗

2 -weighted at 7T
(c) Variable Density (VD) sampling scheme (25% under-

sampling), non-realistic
(d) SPARKLING [3] sampling scheme (Acceleration Fac-

tor of 15)

3. Faster FISTA [4]
Algorithm: FISTA variations to solve Eq. (1) (contributions of [4] highlighted in red)
Input: greedy ∈ {1; 0}; γk ∈]0, 1+greedy

L ]; p, q ∈]0, 1]; r ∈]0, 4]; ξ ∈]0, 1[;S > 1
t0 = 1
while Not converged do

tk = p+
√
q+rt2

k−1
2 ; ak = tk−1−1

tk

if greedy = 1 then
ak = 1

end
zk = xk + ak(xk − xk−1); xk+1 = proxγkR

(zk − γk∇F (zk))
if (zk − xk+1)T (xk+1 − xk) ≥ 0 then

r = ξr; zk = xk
end
if greedy = 1 and ‖xk+1 − xk‖2 ≥ S‖x1 − x0‖2 then

γk+1 = max{ξγk; 1
L}

end
end

5. Results
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Comparison of the convergence speed of different algorithms to solve Eq. 1. Parameters used for:
1) FISTA-CD (by Chambolle and Dossal): a = 20; 2) Rada-FISTA: p = 1

30 , q = 1
10 , ξ = 0.96; 3)

greedy FISTA: ξ = 0.96, S = 1.1; 4) POGM’ [2]: σ = 0.96. 5) Condat-Vu [1]: ρ = 1, σ = 10. The
reference is the original implementation proposed by Beck and Teboulle (FISTA-BT). Greedy-FISTA
and POGM’ converge faster.

(a) Results for the 2D MRI phantom with the VD sampling
(b) Results for the 2D MRI phantom with the SPARKLING sampling
(c) Results for the baboon brain with a retrospective SPARKLING undersampling7. References
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6. Conclusions
The results presented show that the greedy FISTA compares to POGM’ in terms of iterations (only
a few more needed for greedy FISTA to converge). The complexity per iteration is slightly higher for
greedy FISTA since it needs to compute an additional norm compared to POGM’. However, greedy
FISTA theoretically uses twice less memory. This might be of a huge importance when scaling these
algorithms to 3D parallel imaging. In the latter context, 32 to 64 k-space are collected simultaneously
over multiple receivers, each of them going up to 5123 in dimension. The results also confirm the
interest of using greedy FISTA compared to vanilla FISTA.

http://arxiv.org/abs/1807.04005

