Online compressed sening MR image reconstruction for high resolution T_2^* imaging

L. El Gueddari ^{1,2}, P. Ciuciu^{1,2}, E. Chouzenoux ^{3,4}, A. Vignaud ¹ and J-C. Pesquet³

¹CEA/NeuroSpin, Gif-sur-Yvette, France ²INRIA-CEA Saclay Ile-de-France, Parietal team, Univ Paris-Saclay, France ³CVN, Centrale-Supélec, Univ. Paris-Saclay, France ⁴LIGM, Paris-Est University, France

ISMRM 2019, Montreal, Canada

Outline

- Compressed Sensing in MRI
 - Faster acquisition for high-resolution MRI
 - Compressed sensing in MRI
- Online reconstruction
 - Problem statement
 - Optimization algorithm
- Experiments: General setting
- Cartesian under-sampling: Experiments & Results
 - Cartesian setting
 - Cartesian results
- 5 Non-Cartesian under-sampling: Experiments & Results
 - Non-Cartesian setting
 - Non-Cartesian results

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, *Magnetic Resonance in Medicine*.

⁵Lustig, Donoho, and Pauly 2007, *Magnetic Resonance in Medicine*.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

To reduce this acquisition time many methods have been proposed:

3 / 22

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, Magnetic Resonance in Medicine.

⁵Lustig, Donoho, and Pauly 2007, *Magnetic Resonance in Medicine*.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

To reduce this acquisition time many methods have been proposed:

Parallel MRI^{1,2}

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, Magnetic Resonance in Medicine.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

- Parallel MRI^{1,2}
- Partial Fourier³

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, *Magnetic Resonance in Medicine*.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

- Parallel MRI^{1,2}
- Partial Fourier³
- Simultaneous Multi-Slice⁴

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, *Magnetic Resonance in Medicine*.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

- Parallel MRI^{1,2}
- Partial Fourier³
- Simultaneous Multi-Slice⁴
- Compressed Sensing⁵

¹Griswold et al. 2002, *Magnetic Resonance in Medicine*.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, *Magnetic Resonance in Medicine*.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

- Parallel MRI^{1,2}
- Partial Fourier³
- Simultaneous Multi-Slice⁴
- $\bullet \ \, \text{Compressed Sensing}^5 \leftarrow \text{reaches higher acceleration factors}^6 \\$

¹Griswold et al. 2002, Magnetic Resonance in Medicine.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, *Magnetic Resonance in Medicine*.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

High resolution MRI:

- ullet improves the spatial definition o helps early diagnosis
- requires longer acquisition time

- Parallel MRI^{1,2}
- Partial Fourier³
- Simultaneous Multi-Slice⁴
- Compressed Sensing⁵ ← reaches higher acceleration factors⁶

¹Griswold et al. 2002, *Magnetic Resonance in Medicine*.

²Pruessmann et al. 1999, Magnetic Resonance in Medicine.

³Feinberg et al. 1986, *Radiology*.

⁴Hargreaves et al. 2004, Magnetic Resonance in Medicine.

⁵Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.

⁶Lazarus et al. 2019, Magnetic Resonance in Medicine.

Compressed Sensing MRI

Provides theoretical guarantees of exact reconstruction under three main pillars:

• Sparse decomposition in a dictionary (Wavelet, Total Variation, Frames, ...)

Figure: Sparse decomposition using wavelet basis

Compressed Sensing MRI

Provides theoretical guarantees of exact reconstruction under three main pillars:

- Sparse decomposition in a dictionary (Wavelet, Total Variation, Frames, ...)
- Asymptotically incoherent acquisition with respect to this sparse decomposition⁷

Figure: Under sampled K-space used to accelerate the acquisition

Compressed Sensing MRI

Provides theoretical guarantees of exact reconstruction under three main pillars:

- Sparse decomposition in a dictionary (Wavelet, Total Variation, Frames, ...)
- Asymptotically incoherent acquisition with respect to this sparse decomposition⁷
- Reconstruction that promotes the sparsity.

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x} \in \mathbb{C}^{N}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{F}_{\Omega} \boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{\Psi} \boldsymbol{x}\|_{1}$$

with:

- ullet Ψ : sparse decomposition
- x: MR image to be recovered
- y: under-sampled k-space data
- F_{Ω} : under-sampled Fourier operator on the support Ω
- $\lambda > 0$: hyper-parameter

Compressed sensing limitations

Reconstruction time is long especially for:

- Highly accelerated acquisition with non-Cartesian sampling schemes
- when nonuniform Fourier transform^{8,9} is needed

Our proposition:

- Start the reconstruction from incomplete data
- Interleave acquisition and reconstruction

This will allow us to give a continuous feedback to the radiologist along the scan.

L. El Gueddari et al. (NeuroSpin)

Our approach for online MR image reconstruction

Figure: Online MR image reconstruction framework

6 / 22

Online reconstruction: Problem statement

Online MR image reconstruction is formulated as follows:

$$\forall j \in \mathbb{N}, 0 < j \leqslant \textit{n}_{\textit{b}}; \quad \hat{\boldsymbol{x}}^{j} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^{N}} \frac{1}{2 \# \Omega_{j}} \left\{ \|\textit{F}_{\Omega_{j}} \boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{\Psi} \boldsymbol{x}\|_{1} \right\}$$

With:

- n_b : the number of batches
- s_b : the number of spokes in a batch
- n_j : the number of iterations in each batch
- Γ_i : the support of the i^{th} shot
- $\Omega_j = \bigcup_{0 \leqslant i \leqslant j \, s_b} \Gamma_i$ is the *cumulative* set of the $j \, s_b$ collected spokes

Online reconstruction: Problem statement

Online MR image reconstruction is formulated as follows:

$$\forall j \in \mathbb{N}, 0 < j \leqslant n_b; \quad \hat{\boldsymbol{x}}^j = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{C}^N} \frac{1}{2 \# \Omega_j} \left\{ \| F_{\Omega_j} \boldsymbol{x} - \boldsymbol{y} \|_2^2 + \lambda \| \boldsymbol{\Psi} \boldsymbol{x} \|_1 \right\}$$

With:

- n_b : the number of batches
- s_b : the number of spokes in a batch
- n_j : the number of iterations in each batch
- Γ_i : the support of the i^{th} shot
- $\Omega_j = \bigcup_{0 \leqslant i \leqslant j \, s_b} \Gamma_i$ is the *cumulative* set of the $j \, s_b$ collected spokes

At the end of the acquisition the online and offline problems are equivalent.

Optimization algorithm

Primal dual optimization

We aim to find:

$$\underline{\widehat{x}} \in \arg\min_{x \in \mathbb{C}^N} \left[f(x) + g(\Psi x) \right] \tag{1}$$

where:

- f is convex, differentiable on \mathbb{C}^N and its gradient is β -Lipschitz
- $g \in \Gamma_0(\mathbb{C}^{N_{\Psi}})$ with a closed form proximity operator, given by:

$$\operatorname{prox}_{g}(z) = \underset{v \in \mathbb{C}^{N_{\Psi}}}{\min} \frac{1}{2} \|z - v\|^{2} + g(v)$$
 (2)

Note: Those are standard assumptions in optimization-based image reconstruction methods.

The problem is convex (i.e. does not depends on the initialization)

Condat-Vũ Algorithm

We adapted and implemented Condat¹⁰-Vũ¹¹ algorithm as follows:

```
Algorithm 1: Condat-Vú algorithm
 1 initialize i = 1, j = 1, x_1^1, z_1^1;
 2 while j \leq n_b do
         \kappa_j := \frac{\beta_j}{2||\mathbf{T}||^2};
        \tau_j := \frac{1}{\beta_i};
         while i \leq n_i do
        igg| egin{aligned} oldsymbol{x}_{i+1}^j := oldsymbol{x}_i^j - 	au_j \left( 
abla f_{\Omega_j}(oldsymbol{x}_i^j) + oldsymbol{T}^* oldsymbol{z}_i^j 
ight); \end{aligned}
         igg| egin{aligned} oldsymbol{w}_{i+1}^j := oldsymbol{z}_i^j + \kappa_j oldsymbol{T} \left( 2 oldsymbol{x}_{i+1}^j - oldsymbol{x}_i^j 
ight); \end{aligned}
 7
        egin{aligned} oldsymbol{z}_{i+1}^j := oldsymbol{w}_{i+1}^j - \kappa_j \operatorname{prox}_{g/\kappa_j}\left(rac{w_{i+1}^j}{\kappa_j}
ight); \end{aligned}
            i := i + 1;
        oldsymbol{x}_1^{j+1} := oldsymbol{x}_{n_k}^j;
z_1^{j+1} := z_n^j;
14 end
```

with:

- $\mathbf{o} z = \mathbf{\Psi} x$
- β_i the Lipschitz constant of the spectral norm of f_{Ω_i}

Figure: Optimization algorithm

ISMRN ONF

¹⁰Condat 2013, Journal of Optimization Theory and Applications.

Experiments parameters

Acquisition parameters:

- T2*-weighted ex-vivo baboon brain
- scanned at 7T
- Resolution: $0.4 \times 0.4 \times 3$ mm³
- FOV: 20.4cm
- ullet Base resolution: 512×512
- TR: 550 ms (11 slices)
- TE: 30 ms
- FA: 25°

Reconstruction parameters:

- decimated Bi-Orthogonal 7/9
 Wavelet transform
- Hyper-parameter λ was set retrospectively
- Final number of iterations was set to 200
- Open source code available on PySAP
- 128 GB of RAM and an 8-core (2.40 GHz) Intel Xeon E5-2630 v3 Processor

Retrospective Cartesian under-sampling

Parameter setting

- Sampling mask: 187 lines of 512 samples each
- Under-sampling factor: 2.7
- 12 central lines were acquired first and the others in pseudo random order next
- FFT was used
- Time per iteration $T_{it} = 0.12s$

Figure: Retrospective under-sampling Cartesian mask.

#4974 Online image reconstruction

ONE

Retrospective Cartesian acquisition

Batch setup

Table: Parameter setting for Cartesian acquisitions.

	Batch size s _b	Iterations n_j
$s_b = 2$	[2, 4, 6,,182, 184, 187]	[9, 9, 9,, 9, 200]
$s_b = 23$	[23, 46, 69, 92, 115, 138, 161, 187]	[100, 100,, 100, 200]
$s_b = 46$	[46, 92, 138, 187]	[200, 200, 200, 200]
$s_b = 92$	[92, 187]	[400, 200]
Offline	[187]	[200]

Results: SSIM¹² scores

Cartesian under-sampling

Figure: Comparison of SSIM scores for different batch sizes.

Results: Images by the end of the acquisition

Cartesian under-sampling

Cartesian
$$s_b = 2$$
 $S_b = 23$ $S_b = 46$ $S_b = 96$ $SSIM = 0.961$ $SSIM = 0.948$ $SSIM = 0.909$ $SSIM = 0.772$

Figure: MR images delivered by the end of acquisition.

#4974 Online image reconstruction

ONE

Prospective non-Cartesian under-sampling

Parameter setting

A modified T2* weighted GRE sequence was implemented based on the multi-shot Sparkling^a trajectories:

Number of shots: 43

Number of samples per shots: 3072

Acceleration factor: 12 in time

Under-sampling factor: 2

 Sequence was implemented using a golden angle approach (≈ 112 $^{\circ}$ between consecutive shots)

NFFT^b was used

• Time per iteration: 0.25s

Figure: Prospective Sparkling under-sampling scheme. ^aLazarus et al. 2019, Magnetic Resonance in Medicine.

^bKeiner, Kunis, and Potts 2009, ACM Transactions on Mathematical Software OMS).

Prospective non-Cartesian acquisition

Batch setup

Table: Parameter setting for non-Cartesian acquisitions.

	Batch size <i>s_b</i>	Iterations <i>n_j</i>
Offline	[43]	[200]
H_1	[5, 15, 29, 43]	[22, 30, 30, 200]
H ₂	[7, 14, 21, 28, 35, 43]	[15, 15, 15, 15, 17, 200]
H ₃	[4, 8, 12, 16,, 40, 43]	[8, 8, 8,, 8, 6, 200]

Results: SSIM scores

Non-Cartesian under-sampling

Figure: Comparison of SSIM scores for different batch setups.

Results: Images by the end of the acquisition

Non-Cartesian under-sampling

Figure: MR images delivered by the end of acquisition.

Conclusions & Outlook

Conclusions:

- We proposed a new image reconstruction framework that takes the sequential structure of multi-shot MR acquisition into account.
- This methods provides an online feedback during MR acquisition.
- Compared to offline CS reconstruction, our approach is able to provide online feedback by the end of MR acquisition, both for Cartesian and non-Cartesian sampling.
- ullet We compared multiple batch sizes to get the best reconstruction by the end of the acquisition o small batch sizes give improved results.
- In the given allocated acquisition time, our approach achieves better image quality for Cartesian under-sampling as the time per iteration is cheaper.

Perspectives:

- Extension to the multi-channel acquisition (calibration-less, beyond ℓ_1 -norm regularization)
- Integration in the Gadgetron framework to enable this feedback directly the scanner

Acknowledgements

This project has been granted by the mobility grant of the SFRMBM and the FLI society

References I

- Adcock, B. et al. (2017). "Breaking the coherence barrier: A new theory for compressed sensing". In: Forum of Mathematics, Sigma. Vol. 5. Cambridge University Press.
- Condat, L. (2013). "A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms". In: Journal of Optimization Theory and Applications 158.2, pp. 460–479.
- Feinberg, David A et al. (1986). "Halving MR imaging time by conjugation: demonstration at 3.5 kG.". In: Radiology 161.2, pp. 527–531.
- Fessler, J.A. and B.P. Sutton (2003). "Nonuniform fast Fourier transforms using min-max interpolation". In: IEEE Transactions on Signal Processing 51.2, pp. 560-574.
- Griswold, Mark A et al. (2002). "Generalized autocalibrating partially parallel acquisitions (GRAPPA)". In: Magnetic Resonance in Medicine. 47.6, pp. 1202-1210.
- Hargreaves, Brian A et al. (2004). "Variable-rate selective excitation for rapid shaw sequences". In: Magnetic Resonance in Medicine 52.3, pp. 590–597. ONE

#4974 Online image reconstruction

References II

- Keiner, J., S. Kunis, and D. Potts (2009). "Using NFFT 3—a software library for various nonequispaced fast Fourier transforms". In: ACM Transactions on Mathematical Software (TOMS) 36.4, p. 19.
- Lazarus, Carole et al. (2019). "SPARKLING: variable-density k-space filling curves for accelerated T2*-weighted MRI". In: *Magnetic Resonance in Medicine* 81.6, pp. 3643–3661.
- Lustig, M., D.L. Donoho, and J.M. Pauly (2007). "Sparse MRI: The application of compressed sensing for rapid MR imaging". In: Magnetic Resonance in Medicine 58.6, pp. 1182–1195.
- Pruessmann, K.P. et al. (1999). "SENSE: sensitivity encoding for fast MRI". In: *Magnetic Resonance in Medicine* 42.5, pp. 952–962.
- Vũ, BC (2013). "A splitting algorithm for dual monotone inclusions involving cocoercive operators". In: Advances in Computational Mathematics 38.3, pp. 667–681.
- Wang, Zhou et al. (2004). "Image quality assessment: from error visibility to structural similarity". In: *IEEE Transactions on Image Processing* 13.4, pp. 600–612.