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Context

High resolution MRI:

improves the spatial definition → helps early diagnosis

requires longer acquisition time

To reduce this acquisition time many methods have been proposed:

Parallel MRI1,2

Partial Fourier3

Simultaneous Multi-Slice4

Compressed Sensing5 ← reaches higher acceleration factors6

1Griswold et al. 2002, Magnetic Resonance in Medicine.
2Pruessmann et al. 1999, Magnetic Resonance in Medicine.
3Feinberg et al. 1986, Radiology.
4Hargreaves et al. 2004, Magnetic Resonance in Medicine.
5Lustig, Donoho, and Pauly 2007, Magnetic Resonance in Medicine.
6Lazarus et al. 2019, Magnetic Resonance in Medicine.
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Compressed Sensing MRI

Provides theoretical guarantees of exact reconstruction under three main pillars:

Sparse decomposition in a dictionary (Wavelet, Total Variation, Frames, ...)

Figure: Sparse decomposition using wavelet basis

Asymptotically incoherent acquisition with respect to this sparse
decomposition7

Reconstruction that promotes the sparsity.

x̂ = argmin
x∈CN

1

2
‖y − FΩx‖2

2 + λ‖Ψx‖1

with:
Ψ: sparse decomposition
x: MR image to be recovered
y: under-sampled k-space data
FΩ: under-sampled Fourier operator on the support Ω
λ > 0: hyper-parameter

7Adcock et al. 2017.
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Compressed sensing limitations

Reconstruction time is long especially for:

Highly accelerated acquisition with non-Cartesian sampling schemes

when nonuniform Fourier transform8,9 is needed

Our proposition:

Start the reconstruction from incomplete data

Interleave acquisition and reconstruction

This will allow us to give a continuous feedback to the radiologist along the scan.

8Fessler and Sutton 2003, IEEE Transactions on Signal Processing.
9Keiner, Kunis, and Potts 2009, ACM Transactions on Mathematical Software (TOMS).
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Our approach for online MR image reconstruction

Figure: Online MR image reconstruction framework
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Online reconstruction: Problem statement

Online MR image reconstruction is formulated as follows:

∀j ∈ N, 0 < j 6 nb; x̂j = argmin
x∈CN

1

2#Ωj

{
‖FΩjx− y‖2

2 + λ‖Ψx‖1

}
With:

nb: the number of batches

sb: the number of spokes in a batch

nj : the number of iterations in each batch

Γi : the support of the i th shot

Ωj =
⋃

06i6j sb

Γi is the cumulative set of the j sb collected spokes

At the end of the acquisition the online and offline problems are equivalent.
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Optimization algorithm
Primal dual optimization

We aim to find:

x̂ ∈ argmin
x∈CN

[f (x) + g(Ψx)] (1)

where:

f is convex, differentiable on CN and its gradient is β-Lipschitz

g ∈ Γ0(CNΨ ) with a closed form proximity operator, given by:

proxg (z) = argmin
v∈CNΨ

1

2
‖z − v‖2 + g(v) (2)

Note: Those are standard assumptions in optimization-based image reconstruction
methods.
The problem is convex (i.e. does not depends on the initialization)
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Condat-Vũ Algorithm

We adapted and implemented Condat10-Vũ11 algorithm as follows:

Figure: Optimization algorithm

with:

z = Ψx

βj the Lipschitz constant of
the spectral norm of fΩj

10Condat 2013, Journal of Optimization Theory and Applications.
11Vũ 2013, Advances in Computational Mathematics.
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Experiments parameters

Acquisition parameters:

T2*-weighted ex-vivo baboon
brain

scanned at 7T

Resolution: 0.4× 0.4× 3mm3

FOV: 20.4cm

Base resolution: 512× 512

TR: 550 ms (11 slices)

TE: 30 ms

FA: 25◦

Reconstruction parameters:

decimated Bi-Orthogonal 7/9
Wavelet transform

Hyper-parameter λ was set
retrospectively

Final number of iterations was
set to 200

Open source code available on
PySAP

128 GB of RAM and an 8-core
(2.40 GHz) Intel Xeon E5-2630
v3 Processor

L. El Gueddari et al. (NeuroSpin) #4974 Online image reconstruction ISMRM 2019, Montreal, CAN 10 / 22
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Retrospective Cartesian under-sampling
Parameter setting

Sampling mask: 187 lines of
512 samples each

Under-sampling factor: 2.7

12 central lines were acquired
first and the others in pseudo
random order next

FFT was used

Time per iteration Tit = 0.12s

Figure: Retrospective under-sampling
Cartesian mask.
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Retrospective Cartesian acquisition
Batch setup

Table: Parameter setting for Cartesian acquisitions.

Batch size sb Iterations nj
sb = 2 [2, 4, 6, ...,182, 184, 187] [9, 9, 9, ..., 9, 200]
sb = 23 [23, 46, 69, 92, 115, 138, 161, 187] [100, 100, ..., 100, 200]
sb = 46 [46, 92, 138, 187] [200, 200, 200, 200]
sb = 92 [92, 187] [400, 200]
Offline [187] [200]
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Results: SSIM12 scores
Cartesian under-sampling

Figure: Comparison of SSIM scores for different batch sizes.

12Wang et al. 2004, IEEE Transactions on Image Processing.
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Results: Images by the end of the acquisition
Cartesian under-sampling

Cartesian sb = 2 sb = 23 sb = 46 sb = 96
Reference SSIM= 0.961 SSIM= 0.948 SSIM= 0.909 SSIM= 0.772

Figure: MR images delivered by the end of acquisition.
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Prospective non-Cartesian under-sampling
Parameter setting

A modified T2* weighted GRE sequence
was implemented based on the multi-shot
Sparklinga trajectories:

Number of shots: 43

Number of samples per shots: 3072

Acceleration factor: 12 in time

Under-sampling factor: 2

Sequence was implemented using a
golden angle approach (≈ 112 ◦

between consecutive shots)

NFFTb was used

Time per iteration: 0.25s

aLazarus et al. 2019, Magnetic Resonance in Medicine.
bKeiner, Kunis, and Potts 2009, ACM Transactions on Mathematical Software

(TOMS).

Figure: Prospective Sparkling
under-sampling scheme.
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Prospective non-Cartesian acquisition
Batch setup

Table: Parameter setting for non-Cartesian acquisitions.

Batch size sb Iterations nj
Offline [43] [200]

H1 [5, 15, 29, 43] [22, 30, 30, 200]
H2 [7, 14, 21, 28, 35, 43] [15, 15, 15, 15, 17, 200]
H3 [4, 8, 12, 16, ..., 40, 43] [8, 8, 8, ..., 8, 6, 200]
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Results: SSIM scores
Non-Cartesian under-sampling

Figure: Comparison of SSIM scores for different batch setups.
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Results: Images by the end of the acquisition
Non-Cartesian under-sampling

Cartesian H1 H2 H3

Reference SSIM= 0.752 SSIM= 0.809 SSIM= 0.835

Figure: MR images delivered by the end of acquisition.
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Conclusions & Outlook

Conclusions:

We proposed a new image reconstruction framework that takes the sequential
structure of multi-shot MR acquisition into account.

This methods provides an online feedback during MR acquisition.

Compared to offline CS reconstruction, our approach is able to provide online
feedback by the end of MR acquisition, both for Cartesian and non-Cartesian
sampling.

We compared multiple batch sizes to get the best reconstruction by the end
of the acquisition → small batch sizes give improved results.

In the given allocated acquisition time, our approach achieves better image
quality for Cartesian under-sampling as the time per iteration is cheaper.

Perspectives:

Extension to the multi-channel acquisition (calibration-less, beyond `1-norm
regularization)

Integration in the Gadgetron framework to enable this feedback directly on
the scanner.
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