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Anatomical MRI

Anatomical MRI is generally acquired using Cartesian sampling.

(a) (b) (c)

Figure: Typical (a) Cartesian (b) parallel acquisition (c) CAIPIRINHA1 acquisition

... however in some cases non-Cartesian trajectories are useful ...

1Breuer et al. 2006, Magnetic Resonance in Medicine.
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Non-Cartesian trajectories for anatomical MRI
A non-exhaustive list of usages

For ultra-short echo time imaging2

X-nuclei imaging (TPI3)
To correct for motion, especially for abdominopelvic MRI4

Figure: Stack of stars used for VIBE acquisition

2Johnson et al. 2013, Magnetic Resonance in Medicine.
3Boada et al. 1997, Magnetic Resonance in Medicine.
4Chandarana et al. 2014, European radiology.
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Non-Cartesian trajectories for anatomical MRI
A non-exhaustive list of usages

For ultra-short echo time imaging2

X-nuclei imaging (TPI3)
To correct for motion, especially for abdominopelvic MRI4

Figure: A: Free-breathing stack-of-stars VIBE, B: Breath-holding conventional VIBE

2Johnson et al. 2013, Magnetic Resonance in Medicine.
3Boada et al. 1997, Magnetic Resonance in Medicine.
4Chandarana et al. 2014, European radiology.
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Non-Cartesian trajectories for anatomical MRI

Renewed interest to speed-up acquisition in the context of Compressed Sensing5.

Sparkling Spiral Radial.

Figure: Example of non-Cartesian trajectories.

5Lazarus et al. 2019, Magnetic Resonance in Medicine.
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Non-Cartesian trajectories for anatomical MRI

Renewed interest to speed-up acquisition in the context of Compressed Sensing5.

a b c d

e f g h

SPARKLINGREFERENCE SPIRAL RADIAL

Figure: Comparison of different acquisition trajectories with 16-fold accelerated
acquisition on T2*-weighted images.

5Lazarus et al. 2019, Magnetic Resonance in Medicine.
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Non-Cartesian trajectories for anatomical MRI

Parallel imaging acquisition: collect multiple k-space data using a multi-receiver
coil as the latter is known to boost the SNR.

Illustration of multi-receiver coil (phased array).

Roemer et al. 1990, Magnetic Resonance in Medicine.
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How do we reconstruct MR images from non-Cartesian k-space
measurements in parallel imaging?
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Non-Cartesian MR image reconstruction in parallel imaging
Self-calibrating methods

Non-Cartesian reconstruction techniques can be split in two categories:

1 Self-calibrating methods:

require a region where the signal has been sampled at least at the Nyquist rate
model the coil sensitivity profiles S` for all channels ` = 1, . . . , L7,8

solve an inverse problem and recover a single full FOV image:

x̂ = argmin
x∈CN

1

2

L∑
`=1

σ−2
` ‖FΩS`x− y`‖2

2 + λ‖Ψx‖1 (1)

y` ∈ CM the `th channel-specific data set
x ∈ CN the reconstructed image (ex. N = 512× 512)
FΩ is the forward under-sampling Fourier operator
Ψ ∈ CNΨ×N linear operator related to a sparse decomposition

Note: Extraction of coil sensitivity maps is challenging in non-Cartesian case

7Samsonov et al. 2004, Magnetic Resonance in Medicine.
8Uecker et al. 2014, Magnetic Resonance in Medicine.
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Non-Cartesian MR Image reconstruction from
multi-channel array coil acquisition
Calibration-less methods

Non-Cartesian reconstruction techniques can be split in two categories:

2 Calibration-less methods:

do not require any calibration region

solve an inverse problem but recover channel-specific images
use the redundant information given by each coil to impose constraints such as
low-rank CLEAR9 or group-sparsity CALM10

more likely to be used for on-line image reconstruction

9Trzasko and Manduca 2011, Signals, Systems and Computers (ASILOMAR), 2011
Conference Record of the Forty Fifth Asilomar Conference on.

10Majumdar and Ward 2012, Magnetic Resonance in Medicine.
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Problem statement

Calibration-less MR image reconstruction problem solved using an analysis
formulation:

Definition
MR image reconstruction is formulated as follows:

x̂ = argmin
x∈CN×L

{1

2

L∑
`=1

σ−2
` ‖FΩx` − y`‖2

2 + g(Tx)
}
, (2)

with:

y` ∈ CM the `th channel-specific data set

x` ∈ CN the `th channel-specific reconstructed image (ex. N = 512× 512)

FΩ is the forward under-sampling Fourier operator

T ∈ CNΨ×N linear operator related to a sparse decomposition

g is a convex regularization term that promotes sparsity
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Optimization algorithm
Primal dual optimization

We aim to find:

x̂ ∈ argmin
x∈CN×L

[f (x) + g(Tx)] (3)

where:

f is convex, differentiable on CN×L and its gradient is β-Lipschitz

g ∈ Γ0(CNΨ×L)11 with a closed form proximity operator, given by:

proxg (z) = argmin
v∈CNΨ×L

1

2
‖z − v‖2 + g(v) (4)

Note: Those are standard assumptions in optimization based image reconstruction
methods.

11Γ0 is the set of convex proper lower semi-continuous functions on CNΨ×L taking values on
R ∪ inf
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Optimization algorithm
Condat-Vũ sequence

Using a primal-dual optimization method proposed by Condat-Vũ12,13:

Algorithm 1: Condat-Vũ algorithm

initialize k = 0, τ > 0, κ > 0, x0, z0;
while k ≤ K do

xk+1 := xk − τ (∇f (xk) + T ∗zk);

wk+1 := zk + κT
(
2xk+1 − xk

)
;

zk+1 := wk+1 − κ proxg/κ

(wk+1

κ

)
;

end

with:

the algorithm weakly converges to the solution of Eq. (3) if

1

τ
− κ|||T |||2 ≥ β

2

τ and κ hyper-parameters set as follows: τ :=
1

β
, κ :=

β

2|||T |||2
12Condat 2013, Journal of Optimization Theory and Applications.
13Vũ 2013, Advances in Computational Mathematics.
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Joint sparsity regularization
Group-LASSO

Parallel imaging has been proved to have tighter recovery guarantees than single
channel acquisition when combined with Group-LASSO (GL) regularization14.

Definition
The group-LASSO penalty is defined as follows:

gGL(z) = ‖z‖1,2 =
S∑

s=1

λγs Ps∑
p=1

√√√√ L∑
`=1

|zsp`|2


λ and γ are positive hyper-parameters

s models the scale or subband dependence

14Chun, Adcock, and Talavage 2016, IEEE Transactions on Medical Imaging.
For γ = 1 the algorithm corresponds to Majumdar and Ward, Magnetic Resonance in

Medicine, 2012
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Joint sparsity regularization
Sparse group-LASSO

Variant: Sparse group-LASSO16 (sGL)

Definition

∀z ∈ CNΨ×L, gsGL(z) = gGL(z) + µ ‖z‖1 (5)

µ being positive hyper-parameter.

sGL proximity operator18 is closed form and corresponds
to the composition of GL proximity operator with soft-
thresholding.

16Friedman, Hastie, and Tibshirani 2010, arXiv preprint arXiv:1001.0736.
L. El Gueddari et al. (NeuroSpin) #4766 OSCAR-based image reconstruction ISMRM 2019, Montreal, CAN 13 / 26



Joint sparsity regularization
Octagonal Shrinkage and Clustering Algorithm for Regression

Inferring the structure via a pairwise `∞ norm.
OSCAR regularization17 is defined as follows:

Definition

gOSCAR(z) =
S∑

s=1

λ

[
PsL∑
j=1

|zsj |+ γ
∑
j<k

max{|zsj |, |zsk |}

]

=
S∑

s=1

λ

PsL∑
j=1

(γ(j − 1) + 1) |zsj |↓

 (6)

where:
z↓ ∈ CNΨ×L the wavelet coefficients sorted in
decreasing order, i.e.: ∀s ∈ N, |zs1| ≤ · · · ≤ |zsPsL|.
λ and γ are some positive hyper-parameters that
need to be set

Figure: Original wavelet
coefficients (WC)

17Bondell and Reich 2008, Biometrics.
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Joint sparsity regularization
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17Bondell and Reich 2008, Biometrics.
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Experimental set-up

Sequence parameters:

Ex-vivo baboon brain

7T Siemens Scanner GRE

1Tx/32Rx Nova coil

Sparkling trajectory

390µm×390µm in plane-resolution

3mm slice thickness

Acceleration factor of 15 in time

Under-sampling factor of 2.5

T : Undecimated Bi-Orthogonal 7-9 wavelet
transform

Figure: Sparkling trajectory

Hyper-parameters set using a grid-search procedure.
Cartesian scan 512×512 was acquired and used for reference.
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Results
Quantitative assessment

Coil combination: Square root of the Sum-Of-Squares
Structural SIMilarity Index (SSIM)18 used to set hyper-parameters

Table: Image quality assessment for all regularizers.

SSIM pSNR (dB) NRMSE
IFT 0.847 26.50 0.263
GL 0.864 26.92 0.254
sGL 0.851 26.77 0.259

OSCAR 0.875 30.49 0.177
`1-ESPIRiT 0.874 28.32 0.238

Note: `1-ESPIRiT is a self-calibrating method.

18Wang et al. 2004, IEEE transactions on image processing.
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Results
Comparison of the Sum-Of-Squares

Reference IFT GL sGL OSCAR `1-ESPIRiT
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Results
Quantitative assessment

Comparison between coil images:

Figure: Assessment of the SSIM score per channel.
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Results
Comparison of the image channels: low-SNR channel

No reg. Group-LASSO Sparse GL OSCAR
SSIM= 0.630 SSIM= 0.680 SSIM= 0.672 SSIM= 0.646
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Results
Comparison of the image channels: high-SNR channel

No reg. Group-LASSO Sparse GL OSCAR
SSIM= 0.846 SSIM= 0.880 SSIM= 0.863 SSIM= 0.893
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Conclusion & Outlook

Conclusion:

New parallel CS-MRI reconstruction algorithm

No sensitivity maps

OSCAR outperforms group-LASSO and sparse group-LASSO

OSCAR and `1-ESPIRiT are comparable, however the latest is self-calibrating

Same optimization method to solve calibration-less MR reconstruction

Perspectives:

Extension to 3D-MRI

Study motion impact on the reconstruction

Code is available on �: LElgueddari/pysap/calibrationless p mri reconstruction

L. El Gueddari et al. (NeuroSpin) #4766 OSCAR-based image reconstruction ISMRM 2019, Montreal, CAN 22 / 26

https://github.com/LElgueddari/pysap/tree/calibrationless_p_mri_reconstruction
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