OSCAR-based Reconstruction for Compressed Sensing and Parallel MR Imaging

L. El Gueddari1,2, P. Ciuciu1,2, E. Chouzenoux3,4, A. Vignaud1 and J-C. Pesquet3

1CEA/NeuroSpin, Gif-sur-Yvette, France \quad 2INRIA-CEA Saclay Ile-de-France, Parietal team, Univ Paris-Saclay, France \quad 3CVN, Centrale-Supélec, Univ. Paris-Saclay, France \quad 4LIGM, Paris-Est University, France

ISMRM 2019, Montreal, CAN
Outline

1. Motivation & Context
 - Why non-Cartesian acquisition
 - Non-Cartesian MR image reconstruction in parallel imaging

2. Calibration-less MR image reconstruction
 - Problem statement
 - Joint sparsity regularization

3. Experiments & Results
 - Experimental set-up
 - Results

4. Conclusion & Outlook
Anatomical MRI is generally acquired using Cartesian sampling.

Figure: Typical (a) Cartesian (b) parallel acquisition (c) CAIPIRINHA\(^1\) acquisition

... however in some cases non-Cartesian trajectories are useful ...

\(^1\)Breuer et al. 2006, *Magnetic Resonance in Medicine.*
Non-Cartesian trajectories for anatomical MRI

A non-exhaustive list of usages

- For ultra-short echo time imaging\(^2\)
- X-nuclei imaging (TPI\(^3\))
- To correct for motion, especially for abdominopelvic MRI\(^4\)

![Figure: Stack of stars used for VIBE acquisition](image-url)

Non-Cartesian trajectories for anatomical MRI

A non-exhaustive list of usages

- For ultra-short echo time imaging\(^2\)
- X-nuclei imaging (TPI\(^3\))
- To correct for motion, especially for abdominopelvic MRI\(^4\)

Figure: A: Free-breathing stack-of-stars VIBE, B: Breath-holding conventional VIBE

Non-Cartesian trajectories for anatomical MRI

Renewed interest to speed-up acquisition in the context of Compressed Sensing\(^5\).

\textbf{Figure:} Example of non-Cartesian trajectories.

\(^5\)Lazarus et al. 2019, \textit{Magnetic Resonance in Medicine}.
Non-Cartesian trajectories for anatomical MRI

Renewed interest to speed-up acquisition in the context of Compressed Sensing5.

\textbf{Figure}: Comparison of different acquisition trajectories with 16-fold accelerated acquisition on T2*-weighted images.

5Lazarus et al. 2019, \textit{Magnetic Resonance in Medicine}.
Parallel imaging acquisition: collect multiple k-space data using a multi-receiver coil as the latter is known to boost the SNR.

Illustration of multi-receiver coil (phased array).

How do we reconstruct MR images from non-Cartesian k-space measurements in parallel imaging?
Non-Cartesian reconstruction techniques can be split in two categories:

1. Self-calibrating methods:

 \[
 \hat{x} = \arg \min_{x \in \mathbb{C}^{N \times N}} \sum_{\ell=1}^{L} \sigma_{\ell}^{-2} \| F_{\Omega} S_{\ell} x - y_{\ell} \|_2^2 + \lambda \| \Psi x \|_1
 \]

 \(y_{\ell} \in \mathbb{C}^{M} \) the \(\ell \)th channel-specific data set

 \(x \in \mathbb{C}^{N \times N} \) the reconstructed image (e.g. \(N = 512 \times 512 \))

 \(F_{\Omega} \) the forward under-sampling Fourier operator

 \(\Psi \in \mathbb{C}^{N \times N} \) linear operator related to a sparse decomposition

 Note: Extraction of coil sensitivity maps is challenging in non-Cartesian case

Non-Cartesian MR image reconstruction in parallel imaging

Self-calibrating methods

Non-Cartesian reconstruction techniques can be split in two categories:

1. Self-calibrating methods:
 - require a region where the signal has been sampled at least at the Nyquist rate

\[\hat{x} = \arg\min_{x \in \mathbb{C}^{N \times N}} \sum_{\ell=1}^{L} \sigma - \frac{1}{2} \| F_{\Omega} S_{\ell} x - y_{\ell} \|_2^2 + \lambda \| \Psi x \|_1 \]

- \(y_{\ell} \in \mathbb{C}^{M} \) the \(\ell \)th channel-specific data set
- \(x \in \mathbb{C}^{N \times N} \) the reconstructed image (e.g., \(N = 512 \times 512 \))
- \(F_{\Omega} \) is the forward under-sampling Fourier operator
- \(\Psi \in \mathbb{C}^{N \times N} \) linear operator related to a sparse decomposition

Note: Extraction of coil sensitivity maps is challenging in non-Cartesian case

Non-Cartesian reconstruction techniques can be split in two categories:

1. **Self-calibrating methods:**
 - require a region where the signal has been sampled at least at the Nyquist rate
 - model the coil sensitivity profiles S_ℓ for all channels $\ell = 1, \ldots, L$.

Note: Extraction of coil sensitivity maps is challenging in non-Cartesian case.

Non-Cartesian MR image reconstruction in parallel imaging

Self-calibrating methods

Non-Cartesian reconstruction techniques can be split in two categories:

1. **Self-calibrating methods:**
 - require a region where the signal has been sampled at least at the Nyquist rate
 - model the coil sensitivity profiles S_ℓ for all channels $\ell = 1, \ldots, L$\(^7\),\(^8\)
 - solve an inverse problem and recover a single full FOV image:

 \[
 \hat{x} = \arg \min_{x \in \mathbb{C}^N} \frac{1}{2} \sum_{\ell=1}^{L} \sigma_\ell^{-2} \| F_\Omega S_\ell x - y_\ell \|^2_2 + \lambda \| \Psi x \|_1
 \]

 \(y_\ell \in \mathbb{C}^M\) the ℓ^{th} channel-specific data set
 \(x \in \mathbb{C}^N\) the reconstructed image (ex. $N = 512 \times 512$)
 \(F_\Omega\) is the forward under-sampling Fourier operator
 \(\Psi \in \mathbb{C}^{N \Psi \times N}\) linear operator related to a sparse decomposition

Non-Cartesian MR image reconstruction in parallel imaging

Self-calibrating methods

Non-Cartesian reconstruction techniques can be split in two categories:

1. Self-calibrating methods:
 - require a region where the signal has been sampled at least at the Nyquist rate
 - model the coil sensitivity profiles S_ℓ for all channels $\ell = 1, \ldots, L$
 - solve an inverse problem and recover a single full FOV image:

\[
\hat{x} = \arg \min_{x \in \mathbb{C}^N} \frac{1}{2} \sum_{\ell=1}^{L} \sigma_\ell^{-2} \| F_\Omega S_\ell x - y_\ell \|_2^2 + \lambda \| \Psi x \|_1
\]

- $y_\ell \in \mathbb{C}^M$ the ℓ^{th} channel-specific data set
- $x \in \mathbb{C}^N$ the reconstructed image (ex. $N = 512 \times 512$)
- F_Ω is the forward under-sampling Fourier operator
- $\Psi \in \mathbb{C}^{N\psi \times N}$ linear operator related to a sparse decomposition

Note: Extraction of coil sensitivity maps is challenging in non-Cartesian case

Non-Cartesian reconstruction techniques can be split in two categories:

- **Calibration-less methods:**
 - do not require any calibration region

Non-Cartesian reconstruction techniques can be split in two categories:

- **Calibration-less methods:**
 - do not require any calibration region
 - solve an inverse problem but recover channel-specific images

Non-Cartesian MR Image reconstruction from multi-channel array coil acquisition

Calibration-less methods

Non-Cartesian reconstruction techniques can be split in two categories:

2. Calibration-less methods:
 - do not require any calibration region
 - solve an inverse problem but recover channel-specific images
 - use the redundant information given by each coil to impose constraints such as low-rank CLEAR\(^9\) or group-sparsity CALM\(^10\)

\(^{10}\) Majumdar and Ward 2012, *Magnetic Resonance in Medicine*.
Non-Cartesian MR Image reconstruction from multi-channel array coil acquisition

Calibration-less methods

Non-Cartesian reconstruction techniques can be split in two categories:

- Calibration-less methods:
 - do not require any calibration region
 - solve an inverse problem but recover channel-specific images
 - use the redundant information given by each coil to impose constraints such as low-rank CLEAR9 or group-sparsity CALM10
 - more likely to be used for on-line image reconstruction

Calibration-less MR image reconstruction problem solved using an *analysis formulation*:

Definition

MR image reconstruction is formulated as follows:

\[
\hat{x} = \arg\min_{x \in \mathbb{C}^{N \times L}} \left\{ \frac{1}{2} \sum_{\ell=1}^{L} \sigma^{-2}_{\ell} \| F_{\Omega} x_{\ell} - y_{\ell} \|_{2}^{2} + g(Tx) \right\},
\]

(2)

with:

- \(y_{\ell} \in \mathbb{C}^{M} \) the \(\ell \)\(^{th} \) channel-specific data set
- \(x_{\ell} \in \mathbb{C}^{N} \) the \(\ell \)\(^{th} \) channel-specific reconstructed image (ex. \(N = 512 \times 512 \))
- \(F_{\Omega} \) is the forward under-sampling Fourier operator
- \(T \in \mathbb{C}^{N_{\Psi} \times N} \) linear operator related to a sparse decomposition
- \(g \) is a convex regularization term that promotes sparsity
We aim to find:

$$\hat{x} \in \arg\min_{x \in \mathbb{C}^{N \times L}} [f(x) + g(Tx)]$$

(3)

where:

- f is convex, differentiable on $\mathbb{C}^{N \times L}$ and its gradient is β-Lipschitz
- $g \in \Gamma_0(\mathbb{C}^{N \Psi \times L})^{11}$ with a closed form proximity operator, given by:

$$\text{prox}_g(z) = \arg\min_{v \in \mathbb{C}^{\Psi \times L}} \frac{1}{2} \|z - v\|^2 + g(v)$$

(4)

Note: Those are standard assumptions in optimization based image reconstruction methods.

\[\text{11} \Gamma_0 \text{ is the set of convex proper lower semi-continuous functions on } \mathbb{C}^{\Psi \times L} \text{ taking values on } \mathbb{R} \cup \text{inf} \]
Optimization algorithm

Condat-Vũ sequence

Using a primal-dual optimization method proposed by Condat-Vũ\cite{condat2013, vu2013}:

\textbf{Algorithm 1: Condat-Vũ algorithm}

\begin{algorithm}
\begin{align*}
\text{initialize} & \quad k = 0, \tau > 0, \kappa > 0, \mathbf{x}_0, \mathbf{z}_0; \\
\text{while} & \quad k \leq K \text{ do} \\
& \quad \mathbf{x}_{k+1} := \mathbf{x}_k - \tau (\nabla f(\mathbf{x}_k) + \mathbf{T}^* \mathbf{z}_k); \\
& \quad \mathbf{w}_{k+1} := \mathbf{z}_k + \kappa \mathbf{T} (2\mathbf{x}_{k+1} - \mathbf{x}_k); \\
& \quad \mathbf{z}_{k+1} := \mathbf{w}_{k+1} - \kappa \text{prox}_g/\kappa \left(\frac{\mathbf{w}_{k+1}}{\kappa} \right); \\
\text{end}
\end{align*}
\end{algorithm}

with:

- the algorithm weakly converges to the solution of Eq. (3) if

\[
\frac{1}{\tau} - \kappa \|\mathbf{T}\|^2 \geq \frac{\beta}{2}
\]

- \(\tau\) and \(\kappa\) hyper-parameters set as follows: \(\tau := \frac{1}{\beta}\), \(\kappa := \frac{\beta}{2\|\mathbf{T}\|^2}\)

\cite{condat2013, vu2013} Condat 2013, \textit{Journal of Optimization Theory and Applications}.

\cite{vu2013} Vũ 2013, \textit{Advances in Computational Mathematics}.

L. El Gueddari et al. (NeuroSpin)
#4766 OSCAR-based image reconstruction
ISMRM 2019, Montreal, CAN
11 / 26
Joint sparsity regularization
Group-LASSO

Parallel imaging has been proved to have tighter recovery guarantees than single channel acquisition when combined with Group-LASSO (GL) regularization14.

\textbf{Definition}

The group-LASSO penalty is defined as follows:

\[
g_{GL}(z) = \|z\|_{1,2} = \sum_{s=1}^{S} \left(\lambda \gamma^s \sum_{p=1}^{P_s} \sqrt{\sum_{\ell=1}^{L} |z_{sp\ell}|^2} \right)
\]

- λ and γ are positive hyper-parameters
- s models the scale or subband dependence

Joint sparsity regularization
Sparse group-LASSO

Variant: Sparse group-LASSO16 (sGL)

Definition

\[\forall \tilde{z} \in \mathbb{C}^{N_x \times L}, g_{sGL}(\tilde{z}) = g_{GL}(\tilde{z}) + \mu \| \tilde{z} \|_1 \] (5)

\[\mu \] being positive hyper-parameter.

sGL proximity operator18 is closed form and corresponds to the composition of GL proximity operator with soft-thresholding.

Joint sparsity regularization
Octagonal Shrinkage and Clustering Algorithm for Regression

Inferring the structure via a pairwise ℓ_∞ norm. OSCAR regularization\(^\text{17}\) is defined as follows:

\[
g_{\text{OSCAR}}(z) = \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_sL} |z_{sj}| + \gamma \sum_{j<k} \max\{|z_{sj}|, |z_{sk}|\} \right]
\]

\[
= \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_sL} (\gamma(j - 1) + 1) |z_{sj}| \right] \tag{6}
\]

where:
- $z_{\downarrow} \in \mathbb{C}^{N_\psi \times L}$ the wavelet coefficients sorted in decreasing order, i.e.: $\forall s \in \mathbb{N}, |z_{s1}| \leq \cdots \leq |z_{sP_sL}|$.
- λ and γ are some positive hyper-parameters that need to be set.

\(^\text{17}\)Bondell and Reich 2008, *Biometrics*.

\[L. \ El \ Gueddari \ et \ al. \ (NeuroSpin) \]

\[\#4766 \ OSCAR-based \ image \ reconstruction \]

\[ISMRM \ 2019, \ Montreal, \ CAN \]

\[14 / 26 \]
Inferring the structure via a pairwise ℓ_∞ norm. OSCAR regularization17 is defined as follows:

$$g_{\text{OSCAR}}(z) = \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_sL} |Z_{sj}| + \gamma \sum_{j<k} \max\{|Z_{sj}|, |Z_{sk}|\} \right]$$

$$= \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_sL} (\gamma(j - 1) + 1) |Z_{sj}| \right]$$ (6)

where:

- $z_\downarrow \in \mathbb{C}^{N\Psi \times L}$ the wavelet coefficients sorted in decreasing order, i.e.: $\forall s \in \mathbb{N}, |Z_{s1}| \leq \cdots \leq |Z_{sP_sL}|$.

- λ and γ are some positive hyper-parameters that need to be set.

17Bondell and Reich 2008, *Biometrics.*
Joint sparsity regularization
Octagonal Shrinkage and Clustering Algorithm for Regression

Inferring the structure via a pairwise ℓ_∞ norm. OSCAR regularization17 is defined as follows:

\begin{align}
g_{\text{OSCAR}}(z) &= \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_s L} |z_{sj}| + \gamma \sum_{j<k} \max\{ |z_{sj}|, |z_{sk}| \} \right] \\
&= \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_s L} (\gamma(j - 1) + 1) |z_{sj}|_\downarrow \right] \tag{6}
\end{align}

where:
- $z_\downarrow \in \mathbb{C}^{N_\psi \times L}$ the wavelet coefficients sorted in decreasing order, i.e.: $\forall s \in \mathbb{N}, |z_{s1}| \leq \cdots \leq |z_{sP_s L}|$.
- λ and γ are some positive hyper-parameters that need to be set.

17Bondell and Reich 2008, \textit{Biometrics}.
Inferring the structure via a pairwise ℓ_∞ norm. OSCAR regularization\(^{17}\) is defined as follows:

\[
g_{\text{OSCAR}}(z) = \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_s L} |z_{sj}| + \gamma \sum_{j<k} \max\{ |z_{sj}|, |z_{sk}| \} \right] \\
= \sum_{s=1}^{S} \lambda \left[\sum_{j=1}^{P_s L} (\gamma(j - 1) + 1) |z_{sj}| \right]
\] (6)

where:
- $z_{\downarrow} \in \mathbb{C}^{N_{\psi} \times L}$ the wavelet coefficients sorted in decreasing order, i.e.: $\forall s \in \mathbb{N}, |z_{s1}| \leq \cdots \leq |z_{sP_s L}|$.
- λ and γ are some positive hyper-parameters that need to be set.

\(^{17}\)Bondell and Reich 2008, *Biometrics.*
Experimental set-up

Sequence parameters:

- Ex-vivo baboon brain
- 7T Siemens Scanner GRE
- 1Tx/32Rx Nova coil
- Sparkling trajectory
- 390\(\mu\)m \(\times\) 390\(\mu\)m in plane-resolution
- 3mm slice thickness
- Acceleration factor of 15 in time
- Under-sampling factor of 2.5
- \(T\): Undecimated Bi-Orthogonal 7-9 wavelet transform

Hyper-parameters set using a grid-search procedure. Cartesian scan 512\(\times\)512 was acquired and used for reference.
Coil combination: Square root of the Sum-Of-Squares Structural SIMilarity Index (SSIM)18 used to set hyper-parameters

Table: Image quality assessment for all regularizers.

<table>
<thead>
<tr>
<th></th>
<th>SSIM</th>
<th>pSNR (dB)</th>
<th>NRMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFT</td>
<td>0.847</td>
<td>26.50</td>
<td>0.263</td>
</tr>
<tr>
<td>GL</td>
<td>0.864</td>
<td>26.92</td>
<td>0.254</td>
</tr>
<tr>
<td>sGL</td>
<td>0.851</td>
<td>26.77</td>
<td>0.259</td>
</tr>
<tr>
<td>OSCAR</td>
<td>0.875</td>
<td>30.49</td>
<td>0.177</td>
</tr>
<tr>
<td>ℓ_1-ESPIRiT</td>
<td>0.874</td>
<td>28.32</td>
<td>0.238</td>
</tr>
</tbody>
</table>

Note: ℓ_1-ESPIRiT is a self-calibrating method.

18Wang et al. 2004, \textit{IEEE transactions on image processing}.
Results

Comparison of the Sum-Of-Squares

<table>
<thead>
<tr>
<th>Reference</th>
<th>IFT</th>
<th>GL</th>
<th>sGL</th>
<th>OSCAR</th>
<th>ℓ_1-ESPIRiT</th>
</tr>
</thead>
</table>

![Reference images](image1)

![IFT images](image2)

![GL images](image3)

![sGL images](image4)

![OSCAR images](image5)

![ℓ_1-ESPIRiT images](image6)
Results
Quantitative assessment

Comparison between coil images:

Figure: Assessment of the SSIM score per channel.
Comparison between coil images:

Figure: Assessment of the SSIM score per channel.
Results
Comparison of the image channels: low-SNR channel

<table>
<thead>
<tr>
<th>Method</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reg.</td>
<td>0.630</td>
</tr>
<tr>
<td>Group-LASSO</td>
<td>0.680</td>
</tr>
<tr>
<td>Sparse GL</td>
<td>0.672</td>
</tr>
<tr>
<td>OSCAR</td>
<td>0.646</td>
</tr>
</tbody>
</table>

L. El Gueddari et al. (NeuroSpin) #4766 OSCAR-based image reconstruction ISMRM 2019, Montreal, CAN 19 / 26
Results
Quantitative assessment

Comparison between coil images:

Figure: Assessment of the SSIM score per channel.
Results

Comparison of the image channels: high-SNR channel

<table>
<thead>
<tr>
<th>Method</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reg.</td>
<td>0.846</td>
</tr>
<tr>
<td>Group-LASSO</td>
<td>0.880</td>
</tr>
<tr>
<td>Sparse GL</td>
<td>0.863</td>
</tr>
<tr>
<td>OSCAR</td>
<td>0.893</td>
</tr>
</tbody>
</table>

L. El Gueddari et al. (NeuroSpin)
Conclusion & Outlook

Conclusion:
- New parallel CS-MRI reconstruction algorithm
- No sensitivity maps
- OSCAR outperforms group-LASSO and sparse group-LASSO
- OSCAR and ℓ_1-ESPIRiT are comparable, however the latest is self-calibrating
- Same optimization method to solve calibration-less MR reconstruction

Perspectives:
- Extension to 3D-MRI
- Study motion impact on the reconstruction

Code is available on 🌐: LElgueddari/pysap/calibrationless_p_mri_reconstruction
Acknowledgement

This project have been granted by the mobility grant of the SFRMBM and the FLI society

References II

