PySAP-MRI: A Python Package for MR Image Reconstruction

Loubna El Gueddari1, Chaithya G.R.1, Zacchari Ramzi 1,2, Samuel Farrens2, Sophie Starck1,2, Antoine Grigis1, Jean-Luc Starck2 and Philippe Ciuciu1

1 CEA\DRF\NeuroSpin, Gif-Sur-Yvette, France
2 CEA\DRF\DAp\CosmoStat, Gif-Sur-Yvette, France

ISMRM workshop on Data sampling & Image reconstruction
Sedona, AZ, USA – Jan. 26th - 29th, 2020
Declaration of
Financial Interests or Relationships

Speaker Name: Philippe Ciuciu

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.
PySAP: Python Sparse Data Analysis Package

ModOpt

Sparse2D

Cosmic

Compressed Sensing for Magnetic Resonance Imaging & Cosmology

Plug-Ins

https://github.com/cea-cosmic/pysap
Modular Optimization and Sparse Decomposition

\[\hat{x} = \arg \min_{x \in \mathbb{C}^{N \times N}} \frac{1}{2} \| y - Ax \|_2^2 + \lambda g(\Psi x) \]

Optimization Algorithms
- Forward-Backward
- Generalized Forward-Backward
- FISTA
- POGM’
- Condat-Vu

Proximity Operators
- Hard/Soft Thresholding
- Positivity constraint
- Low-Rank Approximation, etc.

Linear Operators
- Sparse2D
- Pywavelets

Cost Function

MRI: \(A = F_{\Omega} \)

Regularization: \(g(\cdot) = \| \cdot \|_1, \| \cdot \|_{\ast}, \| \cdot \|_{2,1}, \cdots \)
Goal: Implement various MRI reconstruction models

- **Modeling Features**
 - Cartesian and non-Cartesian sampling schemes in operators API
 - Various image acquisition models in reconstructors API:
 - 2D vs 3D imaging
 - single vs multiple channels
 - self-calibrating vs calibrationless

\[
\hat{x} = \arg \min_{x \in \mathbb{C}^{N \times N}} \sum_{\ell=1}^{L} \frac{1}{2\sigma^2_\ell} \| F_{\Omega} S_{\ell} x - y_{\ell} \|_2^2 + \lambda \| \Psi x \|_1
\]

20x accel.

\[
\hat{x} = \arg \min_{x \in \mathbb{C}^{N^2 \times L}} \sum_{\ell=1}^{L} \frac{1}{2\sigma^2_\ell} \| F_{\Omega} x_{\ell} - y_{\ell} \|_2^2 + \lambda g_{\text{OSCAR}}(\Psi x)
\]
Open to the Computational Imaging Community

https://github.com/cea-cosmic

- **Software Features**
 - Continuous integration with Travis
 - Automated build of documentation
 - Integration with pyNUFFT for GPU implementation of NFFT
 - Parallelization over multiCPU for calibrationless recon.
 - GPU support in progress

- **Dissemination**
 - Test data sets & Jupyter notebooks provided (Binder support)
 - Connection to pysap-data and pysap-tutorials

- **Upcoming plug-ins**
 - Electron tomography & microscopy