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In this work, we have proposed an original approach to design efficient k-space sampling trajectories complying with the hardware 

constraints of MRI gradient systems. On the reconstructed images we have shown significant improvements in terms of image quality 

(pSNR) in very high resolution anatomical imaging, which is relevant for in-vivo exams at ultra-high magnetic field (≥ 7 Tesla). MR 

acquisitions performed on 7T MR scanner showed that our sequence CSGRE allows to traverse new complex undersampled sampling 

schemes whose data can then be used to reconstruct high resolution T2* weighted images. Acquisitions for a very high target in-plane 

resolution of 0.2 mm showed that very large acceleration factors (up to 16-fold) are practically achievable using our method. 
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Compressed Sensing in MRI: a 3-ingredient recipe 

Hardware constraints in MRI 

The constraints on 𝐺 read:  

𝑮(𝒕) ≤ 𝑮𝒎𝒂𝒙,         𝑮 (𝒕) ≤  𝑺𝒎𝒂𝒙 
 

On NeuroSpin 7T MR scanner: 
• 𝐺 < 𝐺𝑚𝑎𝑥 ≈ 50 𝑚𝑇.𝑚−1 
• 𝐺 < 𝑆𝑚𝑎𝑥 ≈ 333 𝑇.𝑚−1 . 𝑠−1 
 

In MRI, data is collected in the Fourier space, i.e. the 2D Fourier transform of the image. Usually, 

data points (represented by the red points) are located on a Cartesian grid of a chosen size . 

 

Displacement in the Fourier space is performed via magnetic field gradients. At time t, the k-space 

position 𝑠(𝑡) and gradient waveform 𝐺(𝑡) are related (𝛾 is the gyromagnetic ratio): 

𝒔 𝒕 = 𝒔 𝟎 +  𝑮 𝝉 𝒅𝝉
𝒕

𝟎

 

  How to design an optimal and feasible sampling scheme? 

Sampling in MRI 

CONCLUSION REFERENCES 

ABSTRACT 

Examples of classical MR sampling schemes [Lustig et al, 2008] 
 

 

 

 

 

 Sample more frequently the low frequencies (center of Fourier 

space) 
 

 

 

 

 

 

 

 

 

 

 
Radial VDS This is not feasible in 2D! 

2. Random Variable Density Sampling (VDS) 

 

 

 

 

 

 

 

 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑨𝒛 − 𝒚 𝟐
𝟐 + 𝝀 𝒛 𝟏 

Data consistency 

Enforces sparsity 

𝒛 

𝐹 ∶ NFFT 
𝜓 ∶ sparsifying transform  

𝐴 = 𝐹𝜓−1 
𝑦 ∶ acquired data 

𝑥 ∶ image 
𝑧 = 𝜓𝑥 ∶ sparse representation of x  

𝜆 ∶ regularization parameter 

3. Non-linear reconstruction 

 Iterative algorithms 

(e.g. FISTA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Wavelet 

Represensation of MR 

brain image is sparse! 

Wavelet 

decomposition 

(3 levels) 

1. MR images are compressible: 
 There exists a basis where their decomposition is given by a few large coefficients 

 Compressible signals are well approximated by sparse representations Fourier 

Transform 

Fourier space Image space MR scanner 

(Drawing: Michael Lustig,  

http://www.eecs.berkeley.edu/~mlustig/CS.html) 

How can MRI exams be 

fastened? 
 
A solution is to reduce the acquisition time 

by collecting less data than prescribed by the 

Nyquist criterion. This is called 

« undersampling  ». Compressed Sensing 

theory allows to do this. 

MRI is slow… 

Harry 

Nyquist 

 The sampling frequency should 

be at least twice the highest 

frequency contained in the 

signal. 

From simulations… 

Application to Design of k-space Trajectory 

𝑛 = 2048 × 2048, 𝐺max=40 mT.m-1, 𝑆max = 150 T.m-1.s-1 

Only 4.8% of full k-space  data were sampled (𝑚 = 200, 000).  

For projection, we used 𝑝 = 25,000 points/curve (𝑇 = 200ms) and 8 segments. 

 

 20-fold acceleration compared to whole Fourier space acquisition 

[Boyer et al, 2016] 
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Multi Resolution Strategy: 

48h of computation 
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RESULTS 

… To MRI acquisitions 

CSGRE: an accelerated sequence for T2* weigthed imaging 

 2D-acquisitions performed on 7T SIEMENS MAGNETOM MR scanner with an adapted T2* weighted sequence « CSGRE » - for  

Compressed Sensing with Gradient Recalled Echo (GRE) - with a single-channel receiver coil (InVivo corps). 

 Very high in plane resolution : 0.2 x 0.2 x 3 𝑚𝑚3 – Matrix size: 1024x1024 – FOV = 205 mm² 

 16-fold accelerated trajectory composed of 64 segments of 1024 ADC samples each. 
[Lazarus et al, 2017] 

Nonlinear reconstruction 

FISTA algorithm (𝜆 = 10−5) 

Fourier space 
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At echo-time 

(TE), the 

segment has to 

pass through the 

center of the 

Fourier space. 

TA = 3.8 s TA = 1 min 04s 

VS. 

Reference  

full Cartesian N=1024 Future work 
 

• Use a multi-channel receiver coil to 

increase the SNR 

• Improve reconstruction (penaltiy 

terms, curvelets, primal-dual or MM 

optimization algorithm) 

• Account for gradient errors in 

reconstructions by characterizing 

the gradient system (GIRFs, 

LPM,…) 

• 3D imaging & fMRI 

 Projection on measures  brought by curves  in 𝓢𝑴𝑹𝑰 outperforms radial and spiral imaging by 2 to 3 dB 

Design of feasible gradient waveforms 
 

Projection of a target density on a measures set of 

admissible curves for MRI 

 Target probability density 

 Gradient constraints 

 Coverage speed 

𝝅 𝝊∗ 

Illustration:  

Approximating Mona Lisa 

by a spaghetti i.e. by 

projecting onto the set 

𝒮𝑀𝑅𝐼 𝑝 = 100,000 after  

10,000 iterations 

[Chauffert et al, 2017]  Specific projection algorithm: P𝒬p  [Chauffert et al, 2016] 

Gradient computation by fast summation using the NFFT library [Potts and Steidl, 2003] 

𝜐 ∶ searched admissible measure 
𝜋 ∶ target measure 

ℎ ∶ kernel 
𝑃 ∶  set of admissible parametrizations 

𝑁𝑝 ∶ set of measure points 
𝑄𝑝 ∶ parametrization set 

The general construction (discretized version) 

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to image the anatomy and function of the body in both health and disease. MR image resolution improvement in a standard scanning time (e.g., 

200µm isotropic in 15 min) would allow neuroscientists and doctors to push the limits of their current knowledge and to significantly improve both their diagnosis and patients' follow-up. This could be achieved thanks to the recent 

Compressed Sensing (CS) theory, which has revolutionized the way of acquiring data by overcoming the Shannon-Nyquist criterion. This breakthrough has been achieved by combining three key ingredients: (i) variable density 

sampling, (ii) image representation using sparse decompositions (e.g., wavelets) and (iii) nonlinear image reconstruction. Using CS, data can be massively under-sampled by a given acceleration factor “R” while ensuring conditions for 

optimal image recovery. In this work, we use an in-house algorithm [Boyer et al, 2016, Chauffert et al, 2016,17] to design novel physically plausible sampling schemes adapted to CS-MRI in order to fasten MR acquisitions. The MR 

images reconstructed from data (i.e. Fourier samples) collected over the proposed k-space trajectories have a significantly higher SNR (2-3 dB) than those reconstructed from data collected over more standard sampling patterns (e.g. 

radial, spiral) for a given reconstruction. Likewise, on real data collected on a 7T SIEMENS Magnetom scanner at NeuroSpin, recent reconstructions from highly undersampled data that was acquired with an adapted GRE T2* weighted 

sequence showed promising results on ex-vivo brain baboon. These results proved that our methods are practically feasible for very high resolution MRI with unprecedented acceleration factors. 
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