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Compressed Sensing & LOFAR  Cygnus A  Data

http://arxiv.org/abs/1406.7242	  	  	  Garsden	  	  et	  al,	  “LOFAR	  Image	  Sparse	  Reconstruc5on”,	  A&A,	  575, A90, 2015.

http://arxiv.org/abs/1406.7242
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Colorscale: reconstructed 512x512 image of Cygnus A at 151 MHz (with resolution 2.8” and a pixel size of 1”). Contours levels are
[1,2,3,4,5,6,9,13,17,21,25,30,35,37,40] Jy/Beam from a 327.5 MHz Cyg A VLA image (Project AK570) at 2.5” angular resolution and a pixel size of 0.5”. 
Recovered features in the CS image correspond to real structures observed at higher frequencies.

Garsden  et al, “LOFAR Image Sparse Reconstruction”, A&A, 575, A90, 2015, ArXiv:1406.7242.
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Light curves
data mining

Time series V(t)

Dynamic spectroscopy V(f,t)

Variability timescale

1s

+ others problems (instrument stability, ionosphere...)

☺Good time resolution
☹ No/low angular res.
☹ Low instantaneous SNR
☹ few samples for imaging

☹ Poor time resolution
☺Good angular resolution
☺Good integrated SNR 
☺enough samples for imaging

● Slow transient sources● Fast transient sources
Coherent emission
Relatively fast variability
High brightness temperature
Usually associated with pulsars

Incoherent synchrotron emission
Relatively slow variability
Brightness temperature limited (1012 K)
Associated with all explosive events

The Transient Universe in Radio 



Imaging with interferometry
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Application of 2D-1D sparse reconstruction 
in Radio-Interferometry
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● Exploit the information in time

● The masking operator will also be time-dependent
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 Fundamental Sparse Ingredients

1 - Which Norm ?     l0 through re-weighted l1 
2 -Constraint versus Lagrangian formulation ? Lagrangian 
3 - Analysis versus Synthesis ?  Analysis 
4 - Which dictionary ? 2D-1D WT 
5 - Which noise model ? Stationary correlated noise 
6 - Which minimization method ? Condat-Vu algorithm is very 
efficient. 
7 - How to fix the regularization parameter ? Physical 
interpretation of the regularization parameter, through the noise 
modeling => fully automatic approach.
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We need dictionaries - space and time are independent

€ 

I(k, l) = cJ ,k,l + w j,k,lj=1

J
∑

Starlets
(Isotropic Undecimated Wavelet Transform)

● for the 2D spatial signal

[Starck et al. 2011]

7/9 wavelets

● for the 1D temporal signal



2D-1D Wavelet Decomposition

2D Wavelet

DATA

WT1D

2D Wavelet 2D Wavelet
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Sky model ReconstructionDirty map
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σ=0.5

σ =1.0

σ =1.5

Girard et al, Sparse spatio-temporal imaging of radio transients, in preparation, 2016
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Test #1: SNR - Results
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SNR turn-over below          =40Nt
➙ temporal dilution

Marginal improvement of SNR with time

CLEANed cubes
Higher SNR at low noise
Temporal dilution effect reduced

2D1D Sparse cube
Higher SNR at low & high noise

Slow decrease of SNR due to dilution 
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2D1D Sparse cube
Higher RMSE in high noise snapshots

Better overall profile reconstruction

Dirty & CLEANed cubes

Similar profile error

Higher RMSE in high noise snapshots
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VLA 

Application of  learned sparse reconstruction 
in Radio-Interferometry

Measurement matrix
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● Exploit the correlation along the wavelength axis

● The masking operator will also be wavelength-dependent
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A

*
X = AS

chan 1 chan 4 chan 10chan 7
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Y =  HX +N

Ground Truth

Mixtures

PSF H

Data

Hyperspectral Data 

X



minA,X =� Y �H(AX) �2 s.t. C(X, A)

Y = AX + N

CosmoStat Lab

Yi = Hi �
S�

s=1

ai,sXs + N

Blind Source Separation

Text

Need to add constraint

Modelisation



CosmoStat Lab

 X and S are estimated alternately and iteratively in two steps : 

1) Estimate X assuming A is fixed (iterative thresholding) :

2) Estimate A assuming X is fixed (a simple least square problem) :

min
A

�Y �AX�2
F,�

min
X

�Y �AX�2
F,� +

�

j

�j��txj�1

 Sparse Component Separation: the GMCA Method
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Experiments 

Model sources

BSS only (GMCA), 
 no deconvolution

Channel by channel  
deconvolution (ForWaRD)  
followed by a BSS (GMCA)

Data 
4 out of 10 
channels
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Globally:

where         is the multichannel convolution operator

In Fourier space:

has an infinite number of solutions  and     non-convex problem.

Radio-Interferometry:

A

x̂k

X̂

Aυ

= H  �

Ŷ

+ N

Deconvolved Blind Source Separation (DBSS)
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• Problem formulation

1) Estimate X assuming A is fixed (iterative thresholding) :

Multichannel Tikkhonov Regularization 
+ Wavelet Thresholding 

2) Estimate A assuming X is fixed (a simple least square problem) :

DecGMCA

Ming et al,  Joint Multichannel Deconvolution and Blind Source Separation,  submitted, 2017.
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Experiments(Source reconstruction)

Truth

Reconstruction

Error

0.42% 0.19%Relative error

Data
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Experiments(Spectra reconstruction)

Reconstructed spectrum of S0 v.s reference Reconstructed spectrum of S1 v.s reference
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Experiments(Source reconstruction)

Model sources

BSS only (GMCA), no deconvolution

Channel by channel deconvolution (ForWaRD) followed by a BSS (GMCA)

decGMCA : joint BSS and deconvolution



Mask channel 30
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Simulation Cygnus A
• CygnusA image (image from NRAO website http://images.nrao.edu/110)

M

• Simulation of observation (VLA setting: 27 antennas)

40 channels of observation, interval of 16 MHz between channels

• Injected noise (Gaussian noise, σ~0.17)

Cygnus A
VLA

http://images.nrao.edu/110
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Simulation Cygnus A
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Radio-Imaging
• 2D sparse recovery leads to beautiful results (resolution, photometry, etc)

• Extension to 2D-1D: applied to fast transients search with good angular resolution.

Hyperspectral image restoration
• Multi/hyperspectral data present channels at different resolutions. A rigorous BSS  method should 
take into account the different channel resolutions.

• decGMCA is an efficient method to solve jointly the BSS and the deconvolution problems 
(DBSS).

• It is shown that taking into account joint BSS and deconvolution gives much better results than 
applying only a BSS or a channel per channel Deconvolution followed by a BSS.

Conclusions

Perspective
• Application of DecGMCA to radio data. 

•Application to Weak Lensing and EoR.

• Computation time (HPC).


