

Sparse reconstruction of radio transients and multichannel images

Julien Girard

Jean-Luc Starck

CEA, IRFU, AIM, Service d'Astrophysique, France http://jstarck.cosmostat.org

Compressed Sensing & LOFAR Cygnus A Data

Garsden et al, "LOFAR Image Sparse Reconstruction", A&A, 575, A90, 2015.

J2000 Right Ascension

30°

33°

24^s

27^s

21^s

18^s

43'

40°42' -

 \bigcirc

19^h59^m39^s

J. Girard

H. Garsden

S. Corbel

Garsden et al, "LOFAR Image Sparse Reconstruction", A&A, 575, A90, 2015, ArXiv:1406.7242.

C. Tasse

Colorscale: reconstructed 512x512 image of Cygnus A at 151 MHz (with resolution 2.8" and a pixel size of 1"). Contours levels are [1,2,3,4,5,6,9,13,17,21,25,30,35,37,40] Jy/Beam from a 327.5 MHz Cyg A VLA image (Project AK570) at 2.5" angular resolution and a pixel size of 0.5". **Recovered features in the CS image correspond to real structures observed at higher frequencies.**

The Transient Universe in Radio

+ others problems (instrument stability, ionosphere...)

Imaging with interferometry

N antennas/telescopes

 $\frac{N(N-1)}{2} \quad \text{independent baselines}$

1 projected baseline = 1 sample in the Fourier « u,v » plane

Application of 2D-1D sparse reconstruction in Radio-Interferometry

• The masking operator will also be time-dependent

- 1 Which Norm ? **I**₀ through re-weighted I₁
- 2 Constraint versus Lagrangian formulation ? Lagrangian
- 3 Analysis versus Synthesis? Analysis
- 4 Which dictionary ? 2D-1D WT
- 5 Which noise model ? Stationary correlated noise
- 6 Which minimization method ? Condat-Vu algorithm is very efficient.

7 - How to fix the regularization parameter ? Physical interpretation of the regularization parameter, through the noise modeling => fully automatic approach.

We need **dictionaries** - space and time are independent

$$\psi(x, y, t) = \psi^{(xy)}(x, y)\psi^{(t)}(t)$$

- for the 2D spatial signal
 - Starlets[Starck et al. 2011](Isotropic Undecimated Wavelet Transform)

$$I(k,l) = c_{J,k,l} + \sum_{j=1}^{J} w_{j,k,l}$$

• for the 1D temporal signal

7/9 wavelets

œ

CosmoStat Lab

Girard et al, Sparse spatio-temporal imaging of radio transients, in preparation, 2016

Application of learned sparse reconstruction in Radio-Interferometry

 $(u,v)_n$

 $(u, v)_2$

 $(u, v)_1$

Visibilities

 $w_1w_2 \cdots w_n$

• Exploit the correlation along the wavelength axis

Image cube

X

Measurement matrix (Fourier + Sampling)

• The masking operator will also be wavelength-dependent

Snapshot UV Coverage

30 kn

Hyperspectral Data

Modelisation

Marc LENNON Département Image et Traitement de l'Information (ITI) École Nationale Supérieure des Télécommunications de Bretagne

$$Y_i = H_i * \sum_{s=1}^{S} a_{i,s} X_s + N$$

Need to add constraint

$$min_{A,X} = \parallel Y - \mathcal{H}(AX) \parallel^2 s.t. \ \mathcal{C}(X,A)$$

Blind Source Separation

$$Y = AX + N$$

X and S are estimated alternately and iteratively in two steps :

1) Estimate X assuming A is fixed (iterative thresholding) :

$$\min_{X} \|Y - AX\|_{F,\Sigma}^2 + \sum_{j} \lambda_j \|\Phi^t x_j\|_1$$

2) Estimate A assuming X is fixed (a simple least square problem) :

$$\min_{A} \|Y - AX\|_{F, \Sigma}^2$$

Experiments

50

Data 4 out of 10 channels

50

100

BSS only (GMCA), no deconvolution

Channel by channel deconvolution (ForWaRD) followed by a BSS (GMCA)

Deconvolved Blind Source Separation (DBSS)

$$\forall i; y_i = h_i \star \left(\sum_j a_{ij} x_j\right) + n_i \quad \text{Globally: } \mathbf{Y} = \mathcal{H}(\mathbf{A}\mathbf{X}) + \mathbf{N}$$

where \mathcal{H} is the multichannel convolution operator

In Fourier space:
$$\forall i; \ \hat{y}_i = \hat{h}_i \left(\sum_j a_{ij} \hat{x}_j \right) + \hat{n}_i$$

Radio-Interferometry: $V = M.A\hat{X} + \hat{N}$

has an infinite number of solutions and non-convex problem.

DecGMCA

Problem formulation

$$\min_{\mathbf{A},\mathbf{X}} \sum_{i}^{N_{c}} ||\hat{Y}_{i} - \hat{h}_{i}(\widehat{AX})_{i}||_{2}^{2} + \sum_{i}^{N_{s}} \lambda_{i} ||\boldsymbol{\Phi}^{t} \mathbf{X}_{i}||_{0},$$

1) Estimate X assuming A is fixed (iterative thresholding) :

$$\min_{\mathbf{X}} \sum_{i}^{N_{c}} ||\hat{Y}_{i} - \hat{h}_{i}(\widehat{AX})_{i}||_{2}^{2} + \sum_{i}^{N_{s}} \lambda_{i} ||\boldsymbol{\Phi}^{t} \mathbf{X}_{i}||_{0},$$

Multichannel Tikkhonov Regularization + Wavelet Thresholding

2) Estimate A assuming X is fixed (a simple least square problem) :

N

$$\min_{\mathbf{A}} \sum_{i}^{N_{c}} ||\hat{Y}_{i} - \hat{h}_{i}(\widehat{AX})_{i}||_{2}^{2}$$

Ming et al, Joint Multichannel Deconvolution and Blind Source Separation, submitted, 2017.

CECI Relative error 0.42%

0.19%

CosmoStat Lab

Experiments(Source reconstruction)

Model sources

BSS only (GMCA), no deconvolution

Channel by channel deconvolution (ForWaRD) followed by a BSS (GMCA)

Simulation Cygnus A

• **CygnusA image** (image from NRAO website <u>http://images.nrao.edu/110</u>)

• Simulation of observation (VLA setting: 27 antennas)

40 channels of observation, interval of 16 MHz between channels

• Injected noise (Gaussian noise, $\sigma \sim 0.17$)

Simulation Cygnus A

CosmoStat Lab

Conclusions

Radio-Imaging

- 2D sparse recovery leads to beautiful results (**resolution**, photometry, etc)
- Extension to 2D-1D: applied to fast transients search with good angular resolution.

Hyperspectral image restoration

- Multi/hyperspectral data present channels at different resolutions. A rigorous BSS method should take into account the different channel resolutions.
- decGMCA is an efficient method to solve **jointly the BSS** and the deconvolution problems (**DBSS**).
- It is shown that taking into account joint BSS and deconvolution gives much better results than applying only a BSS or a channel per channel Deconvolution followed by a BSS.

Perspective

- Application of DecGMCA to radio data.
- •Application to Weak Lensing and EoR.
- Computation time (HPC).

œ