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CZ2A INTRODUCTION: HIGH RESOLUTION IMAGING

2D T2*w axial, 7T scanner

120 x 120 x 600 pms
Matrix size: 1690 x 1744

21 slices, 2 averages

32-channel receiver coil,

Motion correction, R=1
G Ve o Acquisition Time
L B\ of 50 minutes!

How can we
accelerate this?

R | PAGE 2
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CZ4A INTRODUCTION: STANDARD MRI ACQUISITION

> Collect Fourier samples over a Cartesian grid

k-space

MR Image

Linear
Reconstruction

MR scanner Spatial frequencies

> |dea: collect less Fourier samples to reduce acquisition time

| PAGE 3



DE LA RECHERCHE A L'INDUSTRIE

CZ2A INTRODUCTION: NAIVE PARTIAL FOURIER

Full-FOV,

Full sampling T

Full-FOV,

Reduce kmax | s low-res:
——r aass b.‘lurred

Low-FOV,
high-res:
may be
aliased

Increase Ak
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CZA MRIACQUISITION ALONG TRAJECTORIES

Line acquisition vs. EPI

Anatomical
(structural)
images

k-space
, > Fourier

, I transform
p—

—

— FMRl, —
— diffusion —
— imaging —
|
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CZ2A K-SPACE TRAJECTORY MODELING

Mathematical modelling:
Let s: [0, T] — RY, (d = 2. 3) denote the sampling curve. We have:

() = 5(0)+7 [ #()dr avec & = (gx. &),

$
0.

a)
Rl

Figure : Spiral imaging: Pulse sequence (Left) and corresponding sampling trajectory (Right).

K-space location is proportional to accumulated area under
gradient waveforms
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CZ2A K-SPACE TRAJECTORY CONSTRAINTS

The gradient encoding g should satisfy: The g field is called gradient encoding, it
should satisfy:

¢ |[g|lsc < Gmax: bounded gradient magnitude, (eg, 70 mT.m~1).
¢ ||g]lcc < Smax: bounded slew rate, (eg, 300 T.m~1.s~1).

Admissible sampling curves

An admissible sampling curve in MRI is a curve belonging to the set:

Swvrl = {5 S (Cz([oa T]))d ’ ”5”005;. 0 — "}’Gmam ”5”00 < B = "Tsmax}

Similar to driving a car on the Fourier plane.
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CZ2A FEASIBLE ACCELERATION SCHEMES

> Can we reduce the acquisition time by measuring fewer samples and still be
able to reconstruct nice images?

UNDERSAMPLING

Possible

Multiple receiver combination Single receiver
coils G > coil
SMS Parallel Imaging Partial Fourier Compre_ssed
Sensing

N /
e

Limitations: - R = acceleration factor < 6
- SNR drops rapidly with R | PAGE 8




OUTLINE

Part I: From CS to pointwise Variable Density Sampling
Part Il: Curve-based Variable Density Sampling

Part Ill: Projection on measure sets

Part IV: MRI simulation results

Part V. Retrospective & Prospective SPARKLING at 7 Tesla

| PAGE 9



CZ2A OUTLINE

Part I: From Compressed Sensing to
pointwise Variable Density Sampling



COMPRESSED SENSING RECIPE

Data is sparse, compressible, redundant...
Sense the compressed information directly!

Donoho, Tao, Romberg, Candes

[Candes et al, IEEE IT 2006]
[Donoho, IEEE IT 2006]

* VARIABLE DENSITY RPApom, RAPTAL , sPTeAls .
tTSPRRSITY ENFORCIAG RECON STRUC TIoN ,
Suci] AS: HINTMUM J - NopM

Michael Lustig, http://www.eecs.berkeley.edu/~mlustig/CS.html
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CQ_ZI WHAT SPARSITY AND COMPRESSIBILITY MEAN?

Sparsity/Compressibility

Sparse Angiography image... is sparse
(spars),

adj. sparseer, sparseest.

1. Thinly scattered or distributed; not thic
k or dense.

2. Scanty; meager.
(http://www.thefreedictionary.com/sparse)

(www.healthcare.siemens)

| PAGE 12


http://www.thefreedictionary.com/sparse
http://www.thefreedictionary.com/sparse

CQ_ZI WHAT SPARSITY AND COMPRESSIBILITY MEAN?

Sparsity/Compressibility

IS not sparse...

Sparse ... but compressible!

(spars),

adj. sparseer, sparseest.

1. Thinly scattered or distributed; not thic
k or dense.

2. Scanty; meager.
(http://www.thefreedictionary.com/sparse)

Wavelet Represensation... is sparse!

Compressible

1. There exists a basis where the
representation has just a few large
coefficients and many small coefficients.
2. Compressible signals are well
approximated by sparse representations

3 levels of
decomposition

| PAGE 13
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CZAQ COMPRESSED SENSING THEORY (1/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Wz, where z € C" is s-sparse.
e Acquisition matrix: A = F*W,

Let T C {1,---.n} and Ar = (a});er. We acquire a measurement vector:
y = Arz.

F*VYz = A=

| PAGE 14



CZAQ COMPRESSED SENSING THEORY (2/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Wz, where 2z € C" is s-sparse.
e Acquisition matrix: A = F*W,

Let  C {1.---.n} and Ar = (a});cr. We acquire a measurement vector:

y = Arz.

F*WYz = A=

{1 reconstruction (promoting sparsity)

_min |z]|1.
zeCn, Arz=y | PAGE 15



CZA COMPRESSED SENSING THEORY (3/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Wz, where z € C" is s-sparse.
e Acquisition matrix: A = F* W,

Let T C {1,---.n} and Ar = (a?);er. We acquire a measurement vector:
y = Arz.

F*'VWz = Az

or in case of noise (synthesis formulation):

zZ=Argmin |y — Arz|[3 + Al|lz[l1  (FISTA algorithm)

ze(cn | PAGE 16



CZ2A UNIFORM RANDOM UNDERSAMPLING

A first CS theorem [Candes and Plan, 2011]

Theorem

Construct ' by uniform and i.i.d. drawing the lines of A.
Let & be a sparse vector, containing s non-zero entries. Assume that:

mz=C-s- (n- max ||a,k||gg) - log (E) (1)
n

1<k<n

where C is a universal constant. Then, with probability 1 — n, @ is the unique solution

of:

et ]2

2 _
In MRI, 12;?%(””&.;{”@ = O(1), hence m > n.

This is called the coherence barrier

| PAGE 17



CZ2A UNIFORM RANDOM UNDERSAMPLING

A first CS theorem [Candes and Plan, 2011]

Theorem

Construct [ by uniform and i.i.d. drawing the lines of A.
Let @ be a sparse vector, containing s non-zero entries. Assume that:

n
m>=C-s-|{n- max ||a 2 ) log | — 1
(- ma a2 ) -1ox (2 )

where C is a universal constant. Then, with probability 1 — 1, x is the unique solution

of:

Fourier CSs

transform 5% reconstruction

-

uniform
- random

sampling

| PAGE 18



CZA VARIABLE DENSITY UNDERSAMPLING

Sample low frequencies more often

5%
Variable density

random Sampling CS reconstruction

(Lustig et al. 2007, Puy et al. 2011, Krahmer & Ward, 2012)

Breaking the coherence barrier: A new theory for Compressed Sensing
Asymptotic incoherence, asymptotic sparsity and multi-level
sampling [Adcock et al. 2013; Roman et al, 2014]

| PAGE 19



CZ2A THEORETICAL FOUNDATIONS OF VDS

Theorem [Chauffert et al., 2013]

Let @ be an arbitrary s-sparse vector. Let (Jx)ke(1,...,m} denote a sequence of i.i.d.
random variables taking value i € {1, ..., n} with probability p;. Generate a random
set [ ={J.....Jm} and measure y = Arax. Take n €]0, 1] and assume that:

2
a n
m=C-s- max | k”'ﬁcln (—)
ke{l.....,n}  pg n

where C is a universal constant. Then with probability 1 — 7 vector x is the unique
solution of the following problem:

zEﬂQUﬂz:y”z”L

Optimal distribution 7 o< ||ak|/%..
2
a
Coherence is now  max lawllz = Z |ak||>, = O(log(n)) in MRI.
k

ke{l,....n} Pk

| PAGE 20



CZ2A ILLUSTRATION OF VARIABLE DENSITY SAMPLING

lllustration of optimal sampling strategy for H = F*W (MRI)

Shannon
Wavelets

min 2D m in 3D

Example of sampling pattern obtained in 2D :

| PAGE 21




- i ‘['t

CS-MRI is sub-optimal! [Lustig et al., 2007]

»CS not used to its full potential:
* Hindered randomness
* Variable density sampling not fulfilled in 3D
* K-space oversampled in one direction
» Undersampling factor generally limited to: R <10

| PAGE 22



CZ2A OUTLINE

Part Il: Curve-based Variable Density
Sampling

[Chauffert et al, SIAM IS 2014, Chauffert et al, IEEE TMI]

| PAGE 23



VDS IMPLEMENTATION ON EXISTING TRAJECTORIES

« CS must comply with MR hardware constraints

. 7T MR
G < Gpgx = 50 mTm™1
k() = k(0) + yfo Gwdu G < Gpygy = 333mTm 1571
»  Regular trajectories ( }

YYYYYYYYYYY
i

Lustig et al. 2008

« Easy implementation: undersampling standard MR trajectories!

. Radial for cardiac cine MR imaging (Winkelmann et al. 2007)
. Spiral or noisy spirals (Lustig et al. 2005)
. Poisson disk sampling (Vasanawala et al. 2011)

| PAGE 24



CZ2A MATHEMATICAL FORMULATION OF VDS

Pushforward measure - illustration

s(10,T)

| PAGE 25



CZ2A MATHEMATICAL FORMULATION OF VDS

Pushforward measure - illustration

B

s(10,T7)

| PAGE 26



CZ2A MATHEMATICAL FORMULATION OF VDS

Pushforward measure - illustration

v(B) = siAT(B) = A1(s™1(B))

AT is the (normalized) Lebesgue measure. | PAGE 27



CZ2A VDS - DEFINITIONS

Pushforward measure
Let Q = [0,1]9, where d = 2 or 3 denote the space dimension. We equip Q with the

Borel algebra B. Let (X, X) be a measurable space and s : X — €2 be a measurable
mapping. i : X — [0; +oc[ denote a measure. The pushforward measure v of i is

defined by:
v(B) = sy pu(B) = (s Y(B)). VYBeB

Ex. 1: Measures supported by curves

Ex. 2: Atomic measures
s:{1l,...,m} = Q, where s(i) = p; denotes the i-th point. Set i as the counting

measure defined for any set | C {1,...,m} by p(/) = I—r':?' Then v is defined by

| PAGE 28



CZ2A VDS - DEFINITIONS

Weak convergence[Chauffert et al, SIAM IS 2014]

A sequence of measures (jin) is said to weakly converge to p, if for any bounded
continuous function @,

[ #0din) > [ @)

Shorthand notation: i, — .

Variable density sampler

A sequence of (random) trajectories s, : X, — € is said to be a m-Variable Density
Sampler if

Snxjt — ™ almost surely

| PAGE 29



DE LA RECHERCHE A L'INDUSTRIE

BASED)

EXAMPLE (TSP

VDS -

72 _ based TSP

!

o
N
_I
L]
O
)
4]
D
I

Il

1)

sawayss Judweg

pSNR=35.6dB

24.1dB

pSNR=

UoIIPNIISUCIa) !

[Chauffert et al, SIAM IS 2014]




CZA VDS - EXAMPLE (TSP-BASED IN 3D)

Figure: 3D reconstruction results for r = 8.8 for various sampling strategies. Top row:
TSP-based sampling schemes (PSNR=42.1 dB). Bottom row: 2D random drawing and
acquisitions along parallel lines [Lustig et al., 2007] (PSNR=40.1 dB).

[Chauffert et al, SIAM IS 2014]



CZA PARAMETERIZATION PROBLEM

Finding a parameterization in Syg corresponding to a curve support is not easy !

e Classical approach, find an admissible parameterization

[Hargreaves et al., 2004, Lustig et al., 2008]:
'

- ..”w-_‘q-"

e Projection onto Sygr [Chauffert et al, IEEE TMI 2016]

| PAGE 32



CZ2A PROJECTION OPERATOR

For an input parameterized curve ¢ : [0; T] — Q, define:

Psym (¢) = Argmin f (s(t) — c(t))?dt
seSpyr Jt[0;T)

Main properties [Chauffert et al, IEEE TMI 2016]

e Fast resolution using accelerated proximal gradient descent on the dual.
® The sampling time is fixed (equal to T).

e The sampling distribution is well preserved (approximation of Wasserstein
distance W5).

= More importantly, Pg, . is the cornerstone of a global approach, described in part
3.

| PAGE 33



CZ2A INTERIM SUMMARY

Two key properties for a Variable Density Sampler:

« Sampling distribution

 Fast k-space coverage

Suboptimal two-step approaches:

* Eg, “Travelling Salesman Problem” sampler

| PAGE 34



CZ2A OUTLINE

Part lll: Projection on measure sets

[Chauffert et al, Const Approx 2016; Boyer et al, SIAM IS 2016]

| PAGE 35



DE LA RECHERCHE A L'INDUSTRIE

INTRODUCTION OF A NEW METRIC

Useful to compare parameterizations and (probability) distributions.
Here : s: {1,....m} — Q and 7 : 2 — R a distribution.

Related to dithering problem [Teuber et al., 2011].

| PAGE 36



CZA INTRODUCTION OF A NEW METRIC

Useful to compare parameterizations and (probability) distributions.
Here : s: {1,...,m} —= Q and 7 : Q — R a distribution.

h+s

. PAGE 37
h: a Gaussian kernel. |



CZ2A A PROJECTION PROBLEM

Working with measures

Let P denote a set of admissible parameterizations and M(P) the set of pushforward
measures associated with elements of P: Sampling trajectories s € P — (2 are seen

through s« € M(P).
M(P) ={v =s.p, s € P}.

m-point measures:
Set of sums of m Dirac delta functions: M(Q™) = {v = % >y 0p. pi € Q}.

Admissible curves for MRI:
M(SmRi) = {V = s«pt. s € SmRI}-

We want v € M(P) to be “as close as possible to”" m, the target distribution.

| PAGE 38



CZA MEASURING DISTANCE BETWEEN MEASURES

Constructing a metric

Let ™ denote the target density.
Let v denote the pushforward measure.

Let h: €2 — R denote a continuous function with a Fourier series that does not
vanish. The following mapping:

dist(m,v) = ||hx (7 — u)||%

defines a distance (or metric) on Mpa, the space of probability measures on Q.

| PAGE 39



CZA PROPERTIES OF THE PROJECTION PROBLEM

Goal: solve numerically, for arbitrary M(P):

inf  dist(m,v)
vre M(P)

T heorem [Chauffert et al, Const Approx 2016]

e |[f P =Q" the sequence of solutions v, — 7.

e If P = 8Smgl, the sequence of solutions v — .

| PAGE 40



CZA NUMERICAL IMPLEMENTATION

The general construction (similar to finite elements)

e Approximate M(P) by a subset N, C QP of p-point measures:

1P
Np = M(Qp) = {1"’ — E qu;: for g = (C?f)li:fiip S QP} >
i=1

where Qp is the discretized version of P.

e Use a projected gradient descent to obtain an approximate projection v/ on Nop:

1
v, € Argmin > I|h* (v — ﬂ')”% :
vEND

e Reconstruct an approximation v € M(P) from v/.

| PAGE 41



CZ2A NUMERICAL RESOLUTION

Variational formulation:

1
— |lh* (v — —
min s (v = )| =
1P P p
min J(a) = 5 33" Hiar—a) = Y [ Hxe— a)dn(),
QEQP 2 i=1 j=1 1 0
E‘epufsmn potential Attraction potential

where H is defined by H(&) = |h|2(¢).

e Repulsion potential: fast k-space coverage
e Attraction potential: right target density =

e Generalization of Poisson disk sampling
strategy [Bridson, 2007, Vasanawala et al., 2011]

| PAGE 42



CZAQ  NUMERICAL RESOLUTION (CONT'D)

Projected gradient descents in the non-convex case

Assume that H is differentiable with [-Lipschitz continuous gradient. Consider the
following algorithm:

549 € P, (o9~ 77 (g

The sequence (q“‘})k converges to a critical point of the functional
J.[Attouch et al., 2013].

Remark

In MRI, Pg, = Ps,p, !

| PAGE 43



CZ2A EXAMPLE : CONTINUOUS LINE DRAWING

m = Mona Lisa Representation of Mona Lisa by s € Sypgi

T e e

fW' T R AR
S e = :p.-? G . - ':_'I"""“'-—-—"-ﬁwﬁmr *

[Chauffert et al, Const Approx 2016]

| PAGE 44



CZ2A 1. MATERIALS AND METHODS

Part IV: MRI Simulations Results

[Boyer et al, SIAM IS 2016]

| PAGE 45



VERY HIGH RESOLUTION IMAGING: SIMULATION
st SETUP

Parameters:
Image size: n = 2048 x 2048 (100 pm isotropic). m = 0.048n decomposed in:

e 196 radial lines of 1, 024 equispaced samples
e 3 rotated versions of the same spiral made up by 25,000 samples

e 3 curves of 25,000 samples each

| PAGE 46



VERY HIGH RESOLUTION IMAGING: SIMULATION
st SETUP

MRI hardware constraints:

® Gmax =40mT.m™ ! and Spax = 150 mT.m~L.ms™1,

e For proton imaging, v = 42.57 MHz.T-! — a=1,703m 1l ms ! and
3 =6,386m"1.ms 2.

| PAGE 47



DE LA RECHERCHE A L'INDUSTRIE

Co2  VERY HIGH RESOLUTION IMAGING: COMPETING
== TRAJECTORIES (1/2)

ure : Standard sampling schemes composed of 200,000 samples. (a): i.i.d. drawings. (b):
Radial lines; (c): 8 interleaved spirals. | PAGE 48




VERY HIGH RESOLUTION IMAGING: COMPETING

TRAJECTORIES (2/2)
(d)

Zoom

Figure : Sampling schemes yielded by our algorithm and composed of 200,000 samples. (d):

isolated points with repulsion; (e): 8 feasible curves in MRI.
| PAGE 49



(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0dB

(radial] | PAGE 50



VERY HIGH RESOLUTION IMAGING CS RESULTS (2/2)

(d) SNR=27.0dB (e) SNR=23.5dB

| PAGE 51
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CZ2A INTERIM SUMMARY

Higher undersampling factors achieved at higher resolution

» Up to 20-fold acceleration at 100 um in-plane

Better image quality achieved using projection on measure sets

* Best results given by the projection on m-points measures

* Projection on admissible curves for MRI outperforms radial and spiral
sampling schemes by 2-3 dB

| PAGE 52



CZ2A OUTLINE

Part V: Retrospective & Prospective
SPARKLING at 7T

SPARKLING: Segmented Projection Algorithm for Random K-space sampLING

[Lazarus et al, submitted to ISMRM'17 & to IEEE TMI]
[Lazarus et al, in prep. to MRM]
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DE LA RECHERCHE A L'INDUSTRIE

CZ2A9 FROM MATHS TO MR PHYSICS

* SPARKLING outperforms classical sampling schemes (eg, radial,
spiral) in simulations but in the real life?

Fourier space " +2.3dBin

SNR of
reconstructed
images!

YYYYYYYYYY

Segment duration=200 ms

N = 2048
R=20
» A g VS. 8 segments
A2 v
- > v Collect enough samples
&~ E'N

in one shot

= Too Long time of
observation

| PAGE 54



CZ2A ADAPT TRAJECTORIES TO MR PHYSICS

1) Shorter observation time & optimized T2* contrast

- Shorter T _=35ms

- Echo time adapted to contrast: TE = 30 ms (directed
trajectories)

K-space

* 64 segments lasting 33.3 ms
and collecting 1024 ADC
o3 samples each.

« Each segment (one is in

N = 1024 blue) passes trough the k-

R=16 A space center at echo time
> TE=30 ms.

9 « Gmax =40 mT/m
S e Smax =200 T/m/s

| PAGE 55



CZ2A9 CHECK FOR CONSISTENCY OF TRAJECTORIES

2) Check for gradient errors
Goal: Estimate gradient errors on novel trajectories.

Methods: LPM (Local Phase Measurement) to measure actual gradients values

Z
I

256
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CZA CHECK FOR GRADIENT ERRORS

2) Check for gradient errors

Results: The measured k-space locations are very close to the prescribed sampling
scheme. Largest errors are observed in regions of high curvatures.

K-space K-space - zoom
600 [ -40 : ‘ —
Prescribed trajectory - 7N
Measured trajectory 50 | e )\)
400 Ending .
oint
p \ _60 -
200 r
-70 F
0 -80
-90
-200
-100
400 | Starting
point -110
-600 120
-600 -400 400 600 -60 -40 -20 0 20
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CZ2A EXPERIMENTS

* Ex-vivo brain baboon in fluorinert solution

* Sequence parameters
7T Siemens healthineers scanner

In vivo Corp Birdcage 1Tx/1Rx coll

T2* weigthing

Slice thickness: 3 mm
TR =60 ms

TE =30 ms
- a=25° Full Cartesian acquisition at N=512 and N=1024

Axial slice

* Signal averaging to increase input SNR

* Retrospective undersampling with the same samples as for simulated images

| PAGE 58



CZA RESOLUTION DEPENDENCE

Input SNR = 78

i w | High

0.9FA-n-- e re;:lgtlon
: : gime
Low i
resolution gl i
Regime -

——R =
—--R =10

R = 20|
—--R = 30

12856 512 1024 2048
N
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CQB RESOLUTION DEPENDENCE: RETROSPECTIVE
— EXPERIMENTS

N =512
Input SNR = 78

Reference

SSIM = 0.83 SSIM = 0.76



CZ2AQ RETROSPECTIVE CS RESULTS - N = 1024

Full Cartesian sampling 16-fold acceleration
TA = 1 min 04s/NEX Virtual TA = 3.8s/INEX
Reference (NEX=10) ~ RadialGA ~~ SPARKLING

SSIM = 0.78 SSIM=0.9 §

FISTA reconstructions (Rice wavelets)
A =104

| PAGE 61




CZ2A9 PROSPECTIVE CS RESULTS - N =512

8-fold acceleration

SPARKLING

SSIM=0.72

| PAGE 62



DE LA RECHERCHE A L'INDUSTRIE

CONCLUSIONS

* Retrospective CS results:

SPARKLING trajectories outperform Golden Angle radial ones on real
data at 7 Tesla

Are consistent with synthetic simulations: 16-fold acceleration

Confirm the dependence of the acceleration factor on the pixel size (or
image resolution defined by k

max)

* Prospective CS results

Our CS-GRE T2*-weighted sequence works!

Lower acceleration achieved so far (8-fold) as compared to retrospective
CS

Gradient imperfections and B, inhomogeneities must be accounted for.
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Thanks for your attention!

Any questions?
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