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INTRODUCTION: HIGH RESOLUTION IMAGING
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2D T2*w axial, 7T scanner

 120 x 120 x 600 µm3

Matrix size: 1690 x 1744

21 slices, 2 averages

32-channel receiver coil, 

Motion correction, R=1

Acquisition Time  
of 50 minutes!

How can we 
accelerate this?

Stucht D, et al. PLoS ONE 2015; 10: e0133921



Spatial frequencies

Acquisition
Linear

Reconstruction

k-space MR Image

IFFT

     MR scanner

 Collect Fourier samples over a Cartesian grid

 Idea: collect less Fourier samples to reduce acquisition time

INTRODUCTION: STANDARD MRI ACQUISITION

|  PAGE 3



INTRODUCTION: NAIVE PARTIAL FOURIER
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MRI ACQUISITION ALONG TRAJECTORIES



K-space location is proportional to accumulated area under
gradient waveforms |  PAGE 6

K-SPACE TRAJECTORY MODELING
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K-SPACE TRAJECTORY CONSTRAINTS



UNDERSAMPLINGUNDERSAMPLING

Multiple receiver 
coils

Multiple receiver 
coils

SMSSMS Parallel ImagingParallel Imaging

Single receiver 
coil

Single receiver 
coil

Partial FourierPartial Fourier Compressed 
Sensing

Compressed 
Sensing

 

Possible 
combination

 Can we reduce the acquisition time by measuring fewer samples and still be 
able to reconstruct nice images?

FEASIBLE ACCELERATION SCHEMES 
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 Part I: From CS to pointwise Variable Density Sampling

 Part II: Curve-based Variable Density Sampling

 Part III: Projection on measure sets

 Part IV: MRI simulation results

 Part V: Retrospective & Prospective SPARKLING at 7 Tesla

OUTLINE
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OUTLINE

Part I: From Compressed Sensing to 
pointwise Variable Density Sampling



COMPRESSED SENSING RECIPE

Data is sparse, compressible, redundant…
Sense the compressed information directly!

Donoho, Tao, Romberg, Candes

[Candes et al, IEEE IT 2006]
[Donoho, IEEE IT 2006]

Michael Lustig, http://www.eecs.berkeley.edu/~mlustig/CS.html
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WHAT SPARSITY AND COMPRESSIBILITY MEAN?

Sparsity/Compressibility

Sparse
(spärs),
adj. spars•er, spars•est.
1. Thinly scattered or distributed; not thic
k or dense. 
2. Scanty; meager.
(http://www.thefreedictionary.com/sparse)

(www.healthcare.siemens)

Angiography image… is sparse
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http://www.thefreedictionary.com/sparse
http://www.thefreedictionary.com/sparse


is not sparse…
… but compressible!

WHAT SPARSITY AND COMPRESSIBILITY MEAN?

Sparsity/Compressibility

Sparse
(spärs),
adj. spars•er, spars•est.
1. Thinly scattered or distributed; not thic
k or dense. 
2. Scanty; meager.
(http://www.thefreedictionary.com/sparse)

Compressible 
1. There exists a basis where the 
representation has just a few large 
coefficients and many small coefficients. 
2. Compressible signals are well 
approximated by sparse representations

3 levels of 
decomposition

Wavelet Represensation… is sparse!
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http://www.thefreedictionary.com/sparse
http://www.thefreedictionary.com/sparse


COMPRESSED SENSING THEORY (1/4)
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COMPRESSED SENSING THEORY (2/4)

|  PAGE 15



COMPRESSED SENSING THEORY (3/4)

(FISTA algorithm)
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UNIFORM RANDOM UNDERSAMPLING
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UNIFORM RANDOM UNDERSAMPLING
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VARIABLE DENSITY UNDERSAMPLING

(Lustig et al. 2007, Puy et al. 2011, Krahmer & Ward, 2012) 

5% 
Variable density 

random sampling CS reconstruction

Sample low frequencies more often

Breaking the coherence barrier: A new theory for Compressed Sensing 
Asymptotic incoherence, asymptotic sparsity and multi-level 
sampling [Adcock et al. 2013; Roman et al, 2014]
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THEORETICAL FOUNDATIONS OF VDS
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ILLUSTRATION OF VARIABLE DENSITY SAMPLING 

Shannon
Wavelets
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Lustig et al. 2007
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CS not used to its full potential:
● Hindered randomness
● Variable density sampling not fulfilled in 3D
● K-space oversampled in one direction
● Undersampling factor generally limited to: R≤10
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OUTLINE

Part II: Curve-based Variable Density 
Sampling

[Chauffert et al, SIAM IS 2014, Chauffert et al, IEEE TMI]



VDS IMPLEMENTATION ON EXISTING TRAJECTORIES

 

 

Lustig et al. 2008

7T MRI
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MATHEMATICAL FORMULATION OF VDS
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MATHEMATICAL FORMULATION OF VDS
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MATHEMATICAL FORMULATION OF VDS
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VDS - DEFINITIONS 
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VDS - DEFINITIONS 

[Chauffert et al, SIAM IS 2014]
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VDS – EXAMPLE (TSP-BASED) 

[Chauffert et al, SIAM IS 2014]



VDS – EXAMPLE (TSP-BASED IN 3D) 

[Chauffert et al, SIAM IS 2014]



PARAMETERIZATION PROBLEM

[Chauffert et al, IEEE TMI 2016]
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PROJECTION OPERATOR

[Chauffert et al, IEEE TMI 2016]
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INTERIM SUMMARY

Two key properties for a Variable Density Sampler:

● Sampling distribution

● Fast k-space coverage

Suboptimal two-step approaches:

● Eg, “Travelling Salesman Problem” sampler
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OUTLINE

Part III: Projection on measure sets

[Chauffert et al, Const Approx 2016; Boyer et al, SIAM IS 2016]



INTRODUCTION OF A NEW METRIC
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INTRODUCTION OF A NEW METRIC
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A PROJECTION PROBLEM
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MEASURING DISTANCE BETWEEN MEASURES
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PROPERTIES OF THE PROJECTION PROBLEM
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[Chauffert et al, Const Approx 2016]



NUMERICAL IMPLEMENTATION
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NUMERICAL RESOLUTION
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NUMERICAL RESOLUTION (CONT'D)
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EXAMPLE : CONTINUOUS LINE DRAWING

[Chauffert et al, Const Approx 2016]
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II. MATERIALS AND METHODS

Part IV: MRI Simulations Results

[Boyer et al, SIAM IS 2016]



VERY HIGH RESOLUTION IMAGING: SIMULATION 
SETUP
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VERY HIGH RESOLUTION IMAGING: SIMULATION 
SETUP

|  PAGE 47



|  PAGE 48UNIRS | 03-02-2016

VERY HIGH RESOLUTION IMAGING: COMPETING 
TRAJECTORIES (1/2)
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VERY HIGH RESOLUTION IMAGING: COMPETING 
TRAJECTORIES (2/2)
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VERY HIGH RESOLUTION IMAGING CS RESULTS (1/2)
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VERY HIGH RESOLUTION IMAGING CS RESULTS (2/2)
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INTERIM SUMMARY

Higher undersampling factors achieved at higher resolution

● Up to 20-fold acceleration at 100 µm in-plane 

Better image quality achieved using projection on measure sets

● Best results given by the projection on m-points measures

● Projection on admissible curves for MRI outperforms radial and spiral
sampling schemes by 2-3 dB
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OUTLINE

Part V: Retrospective & Prospective 
SPARKLING at 7T

[Lazarus et al, submitted to ISMRM'17 & to IEEE TMI]
[Lazarus et al, in prep. to MRM]

SPARKLING: Segmented Projection Algorithm for Random K-space sampLING 
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● SPARKLING outperforms classical sampling schemes (eg, radial, 
spiral) in simulations but in the real life?

Fourier space

vs.

+2-3 dB in 
SNR of 

reconstructed 
images!

Segment duration=200 ms
N = 2048
R = 20
8 segments
 
✔ Collect enough samples 

in one shot

➔ Too Long time of 
observation

FROM MATHS TO MR PHYSICS
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● 64 segments lasting 33.3 ms 
and collecting 1024 ADC 
samples each.

● Each segment (one is in 
blue) passes trough the k-
space center at echo time 
TE=30 ms.

● Gmax = 40 mT/m
● Smax = 200 T/m/s

K-space

N = 1024 
R = 16

1) Shorter observation time & optimized T2* contrast 

– Shorter T
obs

 ≈ 35 ms
– Echo time adapted to contrast: TE ≈ 30 ms (directed 

trajectories)

ADAPT TRAJECTORIES TO MR PHYSICS



2) Check for gradient errors

Goal: Estimate gradient errors on novel trajectories.

Methods: LPM (Local Phase Measurement) to measure actual gradients values

N = 256
R = 4

CHECK FOR CONSISTENCY OF TRAJECTORIES
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Starting 
point

Ending
point

2) Check for gradient errors

Results: The measured k-space locations are very close to the prescribed sampling 
scheme. Largest errors are observed in regions of high curvatures. 

CHECK FOR GRADIENT ERRORS
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EXPERIMENTS

● Ex-vivo brain baboon in fluorinert solution

● Sequence parameters
– 7T Siemens healthineers scanner

– In vivo Corp Birdcage 1Tx/1Rx coil

– T2* weigthing

– Slice thickness: 3 mm

– TR = 60 ms

– TE = 30 ms

– α = 25°

– Axial slice

● Signal averaging to increase input SNR

● Retrospective undersampling with the same samples as for simulated images

Full Cartesian acquisition at N=512 and N=1024
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RESOLUTION DEPENDENCE

High 
resolution 

Regime
Low 

resolution 
Regime
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RESOLUTION DEPENDENCE: RETROSPECTIVE
EXPERIMENTS

N = 512

Input SNR = 78

R = 20

R = 5

R = 30

R = 10

SSIM = 0.93 SSIM = 0.9

SSIM = 0.76SSIM = 0.83

SSIM = 1

Reference

R = 5 R = 10

R = 20 R = 30



RETROSPECTIVE CS RESULTS – N = 1024

16-fold acceleration
Virtual TA = 3.8s/NEX

Full Cartesian sampling
TA = 1 min 04s/NEX

FISTA reconstructions  (Rice wavelets)
λ = 10-4

FFT

SSIM = 0.9

Reference (NEX=10) Radial GA SPARKLING

SSIM = 0.78SSIM = 1
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PROSPECTIVE CS RESULTS – N = 512

8-fold accelerationFull Cartesian sampling

SSIM = 0.9

Reference (NEX=50) SPARKLING

SSIM = 0.78SSIM = 1
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CONCLUSIONS

● Retrospective CS results:

– SPARKLING trajectories outperform Golden Angle radial ones on real 
data at 7 Tesla

– Are consistent with synthetic simulations: 16-fold acceleration

– Confirm the dependence of the acceleration factor on the pixel size  (or 
image resolution defined by kmax)

● Prospective CS results

– Our CS-GRE T2*-weighted sequence works!

– Lower acceleration achieved so far (8-fold) as compared to retrospective 
CS

– Gradient imperfections and B0 inhomogeneities must be accounted for. 
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Thanks for your attention!

Any questions?
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