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Purpose / Introduction
Since  the  work  of  Lustig  et  al.  on  Sparse  MRI  [1],  Compressed  Sensing  (CS)  has  promised  great
opportunities to drastically shorten the acquisition time in MRI by reconstructing images from undersampled
Fourier  data.  Although  CS  theories  provide  upper  bounds  relating  the  number  of  required
measurements m to the image sparsity s and its number of pixels NxN to guarantee exact recovery in the
noise-free case (m ≥ 2s log2N), in practice (noisy case) it remains unclear to which extent MRI acquisitions
can  be  accelerated  while  preserving  image  quality.  More  precisely,  finding  the  relationship  linking  the
maximum achievable undersampling factor R = N2/m to the image resolution in a noisy context is still an
open question. In this numerical study, we propose hints that may guide CS-MRI users in their choice of an
appropriate undersampling factor as a function of the image size for different noise levels.

Subjects and Methods
Simulations  were  performed on a 2D brain  image (Fig.1)  for  increasing  image sizes  and noise  levels
characterized by their input SNR (dB). To produce noisy images, complex Gaussian white noise with varying
standard deviation σ was added to the Fourier data which was then undersampled by acceleration factors of
5, 10 or 20: samples were randomly picked according to a variable density [2]. Nonlinear non-Cartesian
reconstructions were implemented using FISTA algorithm [3] for solving the penalized CS L1-minimization

problem. To assess image quality, we compared the SSIM [4], measuring the similarity in structure with the
full k-space image I0, and the output SNR (dB) calculated as SNR=10 log10(||I0||2/||I-I0||2).

Figure 1:

In the noise-free case, examples of fully sampled brain images (top row), and their 20-fold accelerated reconstructions (bottom row) for
increasing image sizes. Undersampling Fourier sampling schemes are illustrated in bottom right hand corner of reconstructions. As the
image size increases, both SSIM and visual quality are improved. Nonlinear reconstructions involved a redundant wavelet transform
taken from RICE toolbox [5] and the NFFT [6] was used in the data consistency term to handle non-Cartesian Fourier samples.



Results
Results for noise-free data are shown in Fig.2 where SSIM and output SNR are represented as a function of
image size for the considered acceleration factors. Two regimes can be identified: while image quality is
stationary for large image sizes, it rapidly decreases for small decreasing values of N.

Figure 2:

In the noise-free case, evolution of: A) SSIM and B) output SNR (in dB) as a function of image size N for three acceleration factors R=5
(black), R=10 (blue) and R=20 (red). At a fixed acceleration factor, SSIM and output SNR are both increasing with N, very rapidly for
small image sizes and SSIM becomes stationary (close to its maximum value of 1) for large image sizes, especially for R=5-10. Red
dots on R=20 curves correspond to the images displayed in Fig.1.

Regarding 10-fold undersampled noisy data (Fig.3), input SNR larger than 24 dB show the same dynamics,
maintaining high image quality scores close to the noise-free situation before collapsing at low resolution.

Figure 3:

In the noisy case, evolution of: A) SSIM and B) output SNR (dB) of 10-fold accelerated reconstructed images (R=10 only) as a function
of image size N for five increasing noise levels: input SNR of 41 dB (black), 36 dB (blue), 30 dB (red) and 24 dB (green) and 15 dB
(yellow). Input SNR (dB) of noisy images was calculated as 20log(signal/noise) where 'signal' refers to the mean signal of a ROI taken
in the white matter, 'noise' to the standard deviation in the background signal and log is the decimal logarithm. Here, the reference for
computing the SSIM was taken as a very high SNR in standard MRI (SNR=41 dB) while the output SNR was calculated on full k-space
noisy images.

Discussion / Conclusion
Noise-free simulations showed how undersampling factors should be chosen according to image sizes: if a
threshold of 0.7 in SSIM is considered to give satisfactory image quality (Fig.1 N=512),R should not exceed
5 for  N=256 while  very  large R (≥20)  are  only  achievable  for  high  resolution images of  N>1024.  Fig.3
suggests that these results can be extended to experimental situations for high enough input SNR.
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