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I. INTRODUCTION

Magnetic Resonance Imaging (MRI) data are collected in the k-
space (spatial Fourier domain) along regular trajectories which are
subject to kinematic constraints. Indeed, the gradient waveforms
which are responsible for this displacement in k-space are obtained
by energizing gradient coils with electric currents, whose amplitude
and slew rate are upper bounded. Since high resolution MR imaging
requires visiting larger k-space domains (i.e., larger kmax), collecting
such data is time consuming.

On the other hand, MR image resolution improvement in standard
scanning times (e.g., 200 µm in-plane in 15 min) would allow neu-
roscientists and doctors to push the limits of their current knowledge
and to significantly improve both their diagnosis and patients’ follow-
up. One critical path to achieve this goal relies on the Compressed
Sensing (CS) theory [1], [2], which has revolutionized how data can
be collected in a compressed manner while ensuring conditions for
optimal image recovery. This breakthrough has been accomplished
by combining three key ingredients: (i) pseudo-random acquisitions,
(ii) image representation using sparse decompositions (e.g., wavelets)
and (iii) nonlinear image reconstruction.

Although heuristic application of CS in MRI has provided promis-
ing results [3], CS theory cannot be directly cast to the MRI
setting. The reasons are: 1) the acquisition (Fourier) and represen-
tation (wavelets) bases are coherent and 2) 2D sampling schemes
obtained using CS theorems are composed of isolated measurements
and cannot be efficiently implemented by magnetic field gradients.
In the recent literature [4], [5], [7], variable density sampling (VDS)
theory has addressed the first impediment. Moreover, in the seminal
paper [3], 2D pointwise sampling was performed along parallel lines
in the orthogonal readout direction to the the slices of interest,
thus implementing a 2D VDS within each slice. However, in a 3D
perspective, this 2D-VDS is likely suboptimal since high frequencies
along the readout direction are sampled too densely, hence increasing
the scanning time uselessly.

To go beyond this approach, new 2D sampling trajectories that
fulfill acquisition constraints while traversing the k-space as fast
as possible according to a prescribed variable density have been
proposed in [8], [10]. In brief, the proposed framework consists
of projecting a probability distribution (i.e. π) onto a set of mea-
sures that are brought by admissible curves with respect to the
gradient constraints. The proposed iterative algorithm also allows
to handle arbitrary affine constraints (e.g. echo time specification)
and automatically generates efficient sampling patterns. So far, it has
been implemented for 2D MRI both in retrospective and prospective
acquisition scenarios. On massively undersampled (∼ 5 % of full
k-space coefficients) simulated data (Fig. 1), we first illustrate its
impact on the SNR of reconstructed MR images as compared to other

sampling schemes (radial, spiral, iid drawings). All MR images were
reconstructed using a non-Cartesian implementation of the FISTA
algorithm [?]. The reconstruction results obtained in simulations
using this strategy outperform existing acquisition trajectories (spiral,
radial) by about 3 dB. More recently, we adapted a GRE sequence
to acquire a T2* weighted image of an ex-vivo baboon brain with
our new trajectories. These results in progress proved the practical
feasibility of these sampling schemes and shows promising results.

Fig. 1. n = 2048 × 2048, Gmax = 40 mT.m−1, Smax =
150 mT.m−1.ms−1.
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