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Short Reminder on
Compressed Sensing for

Magnetic Resonance Imaging



CARTESIAN SAMPLING SCHEME IN MRI

• Data: samples in k-space i.e. of spatial Fourier transform of object:

Spatial frequencies

Acquisition
Linear

Reconstruction

k-space MR Image

IFFT

7Tesla MRI Scanner
@NeuroSpin

Specificities in MRI: 
● k-space samples collected sequentially in MRI
● Acquisition rate limited by MR physics, gradient 

constraints and physiological constraints on RF 
energy deposition



COMPRESSED SENSING IN MRI

• Objective: Accelerate the data acquisition in MRI

Spatial frequencies

Acquisition
Linear

Reconstruction

k-space MR Image

IFFT

Random undersampling

Nonlinear
reconstruction

Sparsity

Compressed Sensing [Lustig et al., MRM 2007]

7Tesla MRI Scanner
@NeuroSpin

Three ingredients:
• Sparsity of image in transform domain or dictionary 
• Measurement process incoherent with the 

sparsifying transform
• Nonlinear reconstruction algorithm



CS-MRI MATHEMATICAL FORMULATION (1/2)



CS-MRI MATHEMATICAL FORMULATION (2/2)



TWO COMPLEMENTARY DIRECTIONS IN CS-MRI

● Design of new sampling patterns (k-space trajectories)
● SPARKLING: Segmented Projection Algorithm for Random

K-space samplING

• Better or adaptive sparse modeling
● Either fixed such as curvelets, starlets, shearlets …
● Or learned from (trained) or compressed data
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DIRECTION 1: NEW K-SPACE SAMPLING STRATEGIES

• Design of new sampling patterns (k-space trajectories)

RADIAL

vs.

SPARKLING

[Lazarus et al., ISMRM 2017]

● nc = 60  Û  8.5x acceleration
in time

● ns = 4096  Û  Dt = 7.5 µs

Sequence parameters:
- N=512
- FOV=200x200 mm²
- TR=550 ms and TE=30 ms
- α=25°
- BW=32.55 Hz/px
- Tobs=30.72 ms
- Slice thickness: 3 mm
- Single channel receiver coil
- Ex-vivo baboon brain

REFERENCE 
BABOON BRAIN



REFERENCE WITH NEX=32
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SPARKLING + FISTA - NEX=32
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nc=60 and ns=4096 - FISTA
Acceleration 
factor = 8.5



III. RADIAL TO CORNERS + FISTA - NEX=32
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nc=60 and ns=4096 - FISTA
Acceleration 
factor = 8.5



DIRECTION 2: RICHER DICTIONARIES

• Better or adaptive sparse modeling
● Either fixed such as curvelets, starlets, shearlets …
● Or learned from (trained) or compressed data

Curvelets
Starlets, shearlets

Redundant transforms
Ψ induce sparser
decompositions α

Ψ



Dictionary Learning for Blind
CS-MRI

[Ravishankar & Bresler, 2011, 13, 15 & 16]:
IEEE Trans Med Imaging, SIAM Imaging Sci,

IEEEComput Imaging



SYNTHESIS MODEL FOR SPARSE REPRESENTATION



SYNTHESIS DICTIONARY LEARNING



SYNTHESIS-BASED BLIND COMPRESSED SENSING

[Ravishankar and Bresler, IEEE TMI 2011]



ALTERNATIVE: SPARSIFYING TRANSFORM MODEL



ALTERNATIVE: SPARSIFYING TRANSFORM LEARNING



SQUARE TRANSFORM LEARNING FORMULATION



TRANSFORM-BASED BLIND COMPRESSED SENSING 
(BCS)



TRANSFORM-BASED BCS: IDENTIFIABILITY & 
UNIQUENESS 



BLOCK COORDINATE DESCENT (BCD) ALGORITHM 
FOR (P2)



BCD ALGORITHM FOR (P2): TRANSFORM UPDATE STEP



BCD ALGORITHM FOR (P2): IMAGE UPDATE STEP



BCD CONVERGENCE GUARANTEES - NOTATION 



TRANSFORM BCS CONVERGENCE GUARANTEES (1/2)



COMPUTATIONAL ADVANTAGES



CONVERGENCE & LEARNING – 4X UNDERSAMPLING 
(S=3.4 %)



EXAMPLE – 2D RANDOM 5X UNDERSAMPLING



Comparison of FISTA and TLMRI
in the non-Cartesian setting



INTRODUCTION

● Objective:

Compare Transform Learning  (TLMRI1 adapted to NFFT)  reconstructions with FISTA-Symmlet 
reconstructions (currently used), in the case of prospective SPARKLING data.

● TLMRI parameters: 

– λ: parameter to set the weight on the negative log-determinat+Frobenius norm terms in the problem 
formulation

range tested → 0.1, 0.2 (default), 0.3

– ν: weight on the data fidelity term in the problem formulation

range tested → 105, 106 (default), 107, 108

– s: sparsity fraction (i.e., fraction of non-zeros in the sparse code matrix)

range tested → constant s of 0.03, 0.045 (default), 0.06 and one s increasing from 0.013 to 0.055 

– n: Patch size, i.e., Total number of pixels in a square patch

range tested → 25, 36 (default), 49, 64, 81

● FISTA parameters: 

– λ: regularization parameter in front of L1-norm

→ range tested: from 10-7 to 10-4

1: Ravishankar, Saiprasad and Yoram Bresler. "Efficient Blind Compressed Sensing Using Sparsifying Transforms with Convergence 
Guarantees and Application to MRI." SIAM Imaging Sciences (2015): 8(4); 2519-2557.



REMINDER: SPARKLING TRAJECTORIES

Sequence parameters:
- N=512
- FOV=200x200 mm²
- TR=550 ms and TE=30 ms
- α=25°
- BW=32.55 Hz/px
- Tobs=30.72 ms
- Slice thickness: 3 mm
- Single channel receiver coil
- Ex-vivo baboon brain

● Data used for recontructions

– N=512

– Prospective SPARKLING data yielding a 8.5-
fold acceleration in time

(nc=60 segments and ns=4096 samples per 
segment)

– 2 cases tested:

1) Low SNR: NEX=1

2) High SNR: NEX=32

● Image quality metrics:

– SSIM

– NRMSE

– Reference is the full Cartesian image with very 
high SNR (NEX=32)



0. FULL CARTASIAN IMAGES FOR NEX=1 AND 32

NEX=1 NEX=32



I.
Visual comparison 

of best image reconstructions



I. BEST RECONSTRUCTIONS: NEX=1

FISTA-Symmlet TLMRI

SSIM=0.862
NRMSE=0.133

SSIM=0.874
NRMSE=0.136

Acceleration 
factor = 8.5



I. BEST RECONSTRUCTIONS: NEX=32

FISTA-Symmlet TLMRI

SSIM=0.935
NRMSE=0.078

SSIM=0.937
NRMSE=0.079

Acceleration 
factor = 8.5



II.
Parameters' influence on 

TLMRI quality scores 
for NEX=1
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II. NEX=1 – SSIM vs. λ, ν and s

● Optimal value reached for ν=106.
● The sparsity fraction s has a significant impact on SSIM scores.
● λ does not influence the SSIM a lot.
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II. NEX=1 – NRMSE vs. λ, ν and s

● Likewise, for NRMSE, there is an optimal value reached for ν=106.
● The sparsity fraction does matter.
● λ does not significantly influence the NRMSE.
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II. NEX=1 – SSIM vs. patch size

● For NEX=1, patch size does not influence a lot the SSIM scores.



III.
Parameters' influence on 

TLMRI quality scores 
for NEX=32
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III. NEX=32 – SSIM vs. λ, ν and s

● Optimal value reached for ν=107.
● The sparsity fraction s has a significant impact on SSIM scores
● λ does not influence the SSIM a lot.
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III. NEX=32 – NRMSE vs. λ, ν and s

● Optimal value reached for ν=106.
● The sparsity fraction s has an impact on SSIM scores, but less than for NEX=1
● λ does not influence the SSIM a lot.
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III. NEX=32 – SSIM vs. patch size

● For NEX=32, patch size does not significantly influence SSIM scores.



CONCLUSIONS

● TLMRI vs. FISTA-Symmlet

– There is a small but noticeable gain in image quality using TLMRI instead of FISTA-
Symmlet for the low SNR case of NEX=1.

– This advantage is hardly visible on the high SNR case of NEX=32.

● Parameters tuning for TLMRI

– Parameters ν (data fidelity parameter) and s (sparsity fraction) have to be tuned carefully 
since they influence a lot the image quality. Optimal values for the tested cases were 
close to default settings of TLMRI.

– Patch sizes n and λ have a small (or no) impact on the image quality.

● Algorithm durations

– One iteration in TLMRI lasts between 60 and 100 s (depending on convergence of PCG).

– One iteration of FISTA lasts about 0.75 seconds.

– ….
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