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CZ2A CARTESIAN SAMPLING SCHEME IN MRI

* Data: samples in k-space i.e. of spatial Fourier transform of object:

k-space

MR Image

Linear
Reconstruction

7Tesla MRI Scanner
@NeuroSpin

Spatial frequencies

(SpeCIfICI’[IeS in MRI:
k-space samples collected sequentially in MRI
* Acquisition rate limited by MR physics, gradient
constraints and physiological constraints on RF

\_ energy deposition )




CZ2A COMPRESSED SENSING IN MRI

* Objective: Accelerate the data acquisition in MR

@NeuroSpin

7Tesla MRI Scanner

K Compressed Sensing  [Lustig et al., MRM 2@

Nonlinear
reconstruction

Qandom undersampling Sparsity /

e

\_

Three ingredients:

N

Sparsity of image in transform domain or dictionary
Measurement process incoherent with the
sparsifying transform

Nonlinear reconstruction algorithm

J




CZA  CS-MRI MATHEMATICAL FORMULATION (1/2)

m Compressed sensing theory:
e & is sparse in a given basis (e.g. wavelets): & = V", where a € C" is s-sparse.
e Acquisition matrix: A = FWV¥~™,

Let T C {1,--- ,n} and Ar = (a7);er. We acquire a measurement vector:
y=Fra+b=Ara+ b

FU a= A« Ara

Nonlinear reconstruction (synthesis formulation, e.g. FISTA):

a = arg min ||y — Arﬂ:”% + A1

P Y=t

r=V'a



CZA CS-MRI MATHEMATICAL FORMULATION (2/2)

m Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): & = V*a, where a« € C" is s-sparse.
e Acquisition matrix: A= FW¥V",

Let T C {1,---,n}and Ar = (a});cr.- We acquire a measurement vector:
y=Frax+b=Ara+b

FVY a= Ao

Nonlinear reconstruction (analysis formulation, e.g. MM, ADMM):

* = argmin ||y — Frel3 + AWz

e 00



CZ2A TWO COMPLEMENTARY DIRECTIONS IN CS-MRI

* Design of new sampling patterns (k-space trajectories)

* Better or adaptive sparse modeling
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CZ2A DIRECTION 1: NEW K-SPACE SAMPLING STRATEGIES

* Design of new sampling patterns (k-space trajectories)

Sequence parameters:

- N=512

- FOV=200x200 mm?

- TR=550 ms and TE=30 ms
- a=25°

- BW=32.55 Hz/px

- Tobs=30.72 ms

- Slice thickness: 3 mm

- Single channel receiver coil
- Ex-vivo baboon brain

e nc=60 < 8.5x acceleration
in time
e ns=4096 < Dt=7.5us

REFERENCE
BABOON BRAIN

RADIAL

[Lazarus et al., ISMRM 2017]



CZ2A REFERENCE WITH NEX=32




CZ2A  SPARKLING + FISTA - NEX=32

Accelerati
nc=60 and ns=4096 - FISTA f:gfo(:rjsl?sn

| PAGE 12
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CQa Ill. RADIAL TO CORNERS + FISTA - NEX=32 —
: b

|
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Accelerati
nc=60 and ns=4096 - FISTA f:gfo(:rjsl?sn

| PAGE 13



DIRECTION 2: RICHER DICTIONARIES

* Better or adaptive sparse modeling

Redundant transforms
W induce sparser

IS not sparse. . ~
decomp03|t|ons o

... but compressible!

Curvelets
X  Starlets, shearlets

3 levels of
decomposition




Dictionary Learning for Blind
CS-MRI

[Ravishankar & Bresler, 2011, 13, 15 & 16]:
IEEE Trans Med Imaging, SIAM Imaging Sci,
IEEEComput Imaging



CZ2A  SYNTHESIS MODEL FOR SPARSE REPRESENTATION

m Given a signal y € R” (" in MRI) and dictionary D € R"*K | we assume y = Dz
with ||®||p € K = a union of subspaces model.

K

.

rd
A"

T

x [T IINIHIHN

e Real-world signals modeled as y = Dax + €, € is a deviation term.
e Given D, sparsity level s, the synthesis sparse coding problem is:

# = argmin ||y — Dz|3 st |z|o<s

a

e This problem is NP-hard.



CZ2A  SYNTHESIS DICTIONARY LEARNING

m The DL problem (NP-hard):

min > | Rjx - Dbj|3 st |ldi2 = 1Vk, ||bjllo < s, V. (1)
1 _j:l

e Rjxz € C" \/nx \/n patch indexed by location in
image

e R; extracts patch with upper left corner located in
pixel J.

e D c C"*K: patch based dictionary.

o bj: sparse, x; = Db;.

e s: sparsity level, B = [by|bz|- - |bpy].

e DL minimizes fit error of all patches using sparse
representations w.r.t. D.




SYNTHESIS-BASED BLIND COMPRESSED SENSING

[Ravishankar and Bresler, IEEE TMI 2011]

Sparse fitting Regularizer

-

- - Data Fidelity
N P

(PO): min > ||Rjz — Dbl +v || Are -y}
1 1 j:l

st. [[dkll2 = 1,Vk, |[[bjllo < s, V).

o BE[b|by - |by] € CrXN.

e (PO0) learns D € ©"*K and reconstructs = from only undersampled dsata y =
dictionary adaptive to underlying image.

e (PO0) is NP-hard, non-convex even if the £y semi-norm is relaxed to the £; norm.
e DLMRI! solves (P0) for MRI and works better than non-adaptive CS.

e Synthesis BCS algorithms have no guarantees and are expensive.



CZ2A  ALTERNATIVE: SPARSIFYING TRANSFORM MODEL

m Given a signal y € R" (C"” in MRI) and transform W € R™*", we model
Wy = x + n with || < m and 7 an error term.

¢ L )
- i = + ‘2
y
wW X
e Natural signals are naturally sparse in Wavelets, DCT.
e Given W, sparsity level s, the transform sparse coding problem is:

Z = argmin |Wy — |3 st. |z)o<s
£

e T = Hs(W1y) computed by thresholding Wy to the s largest magnitude
elements. Sparse coding is cheap. Signal recovered as W1z,
e Sparsifying transforms exploited for compression (JPEG 2000), ...



CZ2A  ALTERNATIVE: SPARSIFYING TRANSFORM LEARNING

m Square Transform Models
e Unstructured transform Learning [Ravishankar and Bresler, 2013]
e Doubly sparse transform learning
e Online learning for big data [Ravishankar et al., 2015]
]

m Overcomplete Transform Models

e Unstructured overcomplete transform learning

e Learning structured overcomplete transforms with block cosparsity (OCTOBQOS)
[Wen et al., 2015]

m Applications: Sparse representations, Image & Video denoising, Classification, Blind
Compressed Sensing (BCS) for imaging.



SQUARE TRANSFORM LEARNING FORMULATION

Sparsification Error

e -
- ~ Regularizer

N ~ % ]
(P1) : IR;HnB |W Rjx — bj||3 +A (0.5|W |2 — log |det W|)
1 j:l

s.t. ||bj||g < s, V).

e Sparsification Error — measures deviation of data in transform domain from
perfect sparsity.

e Regularizer enables complete control over conditioning & scaling of W.

o If EI(WE) such that the condition number H(ﬁ}) =1, ﬁ}Rj:n = Bj,
1bjllo < s,Vj = globally identifiable by solving (P1).

e (P1) favors both a low sparsification error and good conditioning.

e The solution to (P1) is unitary as A — +oc.



TRANSFORM-BASED BLIND COMPRESSED SENSING

(BCS)

Sparsification Error
P

P - Data Fidelity Regularizer
| ' ) ~ S ——
(P2):  min_ Y IWR;z — bj|3+v |Arz —y |3 +A V(W)
1 1 j:l

N
st. 3 libjllo < s llzll2 < C.
j=1

(P2) learns W, reconstructs @ from only undersampled data y =-.transform
adaptive to underlying image.

Regularizer v(W) 2 0.5]|W |2 — log |det W | controls scaling and x of W.
|x||]2 < C is an energy/range constraint, with C > 0.



TRANSFORM-BASED BCS: IDENTIFIABILITY &

— UNIQUENESS

Proposition 1
Let @ € CP and let y = Ara with A € ©C™*P Suppose:

e |zl2<C
e W € C"*"is a unitary transform
[ ] szl ||WRJ$||D % s

Further, let B denote the matrix that has W Rx as its columns. Then, (z, W, B) is
a global minimizer of Problem (P2), i.e., it is identifiable by solving (P2).

m Given minimizer (z, W, B) of (P2), (z, W ,©OB) is another equivalent minimizer
VO s.t. OO =1, 2_; 1®b;llo < s. Th optimal « is invariant to such transformations

of (W, B).



BLOCK COORDINATE DESCENT (BCD) ALGORITHM

" FOR (P2)

e (P2) solved by alternating between updating W, B, x.

e Alternate a few times between the W and B updates, before performing an
image update.

i 3

e Sparse Coding Step solves (P2) for B with fixed &, W.

N N

min Y |[WRjz —bl5 st. D _|bjllo <s. (2)
j=1 j=1

e Cheap Solution: Let Z € C"*N be the matrix with WRx as its

columns. B = Hs(Z) computed exactly by zeroing out all but the s
largest magnitude coefficients in Z.




C22 BCD ALGORITHM FOR (P2): TRANSFORM UPDATE STEP

e Transform Update Step: Solves (P2) for W with fixed x, B.

N
. 2 2
mln;:1 |W R;x — bj|[5 + 0.5)A|W||z — Alog |det W| (3)

o Let X € ©"*" be the matrix with Rz as its columns.

e Closed-form solution:
W = D.SR(E + (2 + 2M)1f"2) viL™! (4)
where X X" £ 050 = LLY, and L' X B" has a full SVD of VER™.

e Solution is unique if and only if X B is non-singular.




BCD ALGORITHM FOR (P2): IMAGE UPDATE STEP

Image Update Step: Solves (P2) for & with fixed W, B.

N
min 3" [WRjz — b3 + vl Arz — yl} st fzl2<C. (5)
j=1
Least squares problem with £ norm constraint.

Solution is unique as long as the set of overlapping patches covers all all
image pixels.

Solve Least squares Lagrangian formulation:

N
min > |[W Rjz — bj[3 + vl| Arz — |3 + (|3~ C)  (6)
j=1

The optimal multiplier fi € R is the smallest real such that |||z < C.
fi and @ can be found cheaply.




BCD CONVERGENCE GUARANTEES - NOTATION

e Define the barrier function s(B) as

o N
bs(B) = { 0, if > j—1lbjllo<s

+00, otherwise

e xc(a) is the barrier function corresponding to ||x|2 < C.

e (P2)is equivalent to the problem of minimizing the objective

g(W,B,z) ZIIWR:B b3 + vl Are — yll3 + Av(W) + ¢(B)

+ xc(ﬂ:)

e For H € CP*9, p;(H) is the magnitude of the j™ largest
element (magnitude-wise) of H.

o X € C"*N denotes a matrix with Rz, 1<j <N, asits columns.



TRANSFORM BCS CONVERGENCE GUARANTEES (1/2)

Theorem 1
For the sequence {W't, Bt, '} generated by the BCD Algorithm with initial
(WP?, B° 2%) we have:
e {g(W' Bt x")} — g* =g(W° B° x?).
e {WTt Bt x'} is bounded, and all its accumulation points are equivalent,
i.e. they achieve the same value g* of the objective.
o |zt —xtl|z > 0ast— oo.

e Every accumulation point (W, B, x) is a critical point of g satisfying
the following partial global optimality conditions:

x € argming(W, B, &) (7)
W € argming(W,B.z), B € argming(W, B, x) (8)
%% B




COMPUTATIONAL ADVANTAGES

Cost per iteration of transform BCS: O(p*NL)

e N overlapping patches of size p x p, W € ©"*" n 2 p.
e [ # inner alternations between transform updates & sparse coding.

Cost per iteration of synthesis BCS DLMRI: O(p®NJ)

e Dc ™K n2 p2 K o n, sparsity s o n.
e J # inner iterations of dictionary learning using K-SVD [Aharon et al., 2006].

In practice, transform BCS converges quickly and is much cheaper for
large p.

In 3D or 4D imaging, n = p3 or p*, and the gain in computations is
about a factor of n in order.



CONVERGENCE & LEARNING — 4x UNDERSAMPLING
(S=3.4 %)

Zero-filling (28.94 dB) Zero-filling Error
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TLMRI (32.66 dB)  real (top), imaginary (bottom)
parts of learnt 36 x 36 W




CZ2A EXAMPLE - 2D RANDOM 5x UNDERSAMPLING

Reference

=

Sampling Mask DLMRI Error TLMRI Error




Comparison of FISTA and TLMRI
in the non-Cartesian setting



CZ2A9 INTRODUCTION

* Objective:

Compare Transform Learning (TLMRI* adapted to NFFT) reconstructions with FISTA-Symmlet
reconstructions (currently used), in the case of prospective SPARKLING data.

* TLMRI parameters:

- A: parameter to set the weight on the negative log-determinat+Frobenius norm terms in the problem
formulation

range tested — 0.1, 0.2 (default), 0.3
- Vv: weight on the data fidelity term in the problem formulation
range tested — 105, 10¢ (default), 107, 108
- s: sparsity fraction (i.e., fraction of non-zeros in the sparse code matrix)
range tested — constant s of 0.03, 0.045 (default), 0.06 and one s increasing from 0.013 to 0.055
- n: Patch size, i.e., Total number of pixels in a square patch
range tested — 25, 36 (default), 49, 64, 81
* FISTA parameters:
- A: regularization parameter in front of L,-norm

— range tested: from 10-7 to 10-

. Ravishankar, Saiprasad and Yoram Bresler. "Efficient Blind Compressed Sensing Using Sparsifying Transforms with Convergence
Guarantees and Application to MRI." SIAM Imaging Sciences (2015): 8(4); 2519-2557.



« Data used for recontructions

- N=512

- Prospective SPARKLING data yielding a 8.5-
fold acceleration in time

(nc=60 segments and ns=4096 samples per
segment)

- 2 cases tested:
1) Low SNR: NEX=1
2) High SNR: NEX=32

* Image quality metrics:
- SSIM
- NRMSE

- Reference is the full Cartesian image with very
high SNR (NEX=32)

Sequence parameters:

- N=512

- FOV=200x200 mm?

- TR=550 ms and TE=30 ms
- a=25°

- BW=32.55 Hz/px

- Tobs=30.72 ms

- Slice thickness: 3 mm

- Single channel receiver coil
- Ex-vivo baboon brain




CZ2A 0.FULL CARTASIAN IMAGES FOR NEX=1 AND 32




Visual comparison
of best image reconstructions



CZ2A 1.BEST RECONSTRUCTIONS: NEX=1

Acceleration
factor = 8.5

FISTA-Symmlet

SSIM=0.862 SSIM=0.874
NRMSE=0.133 NRMSE=0.136




CZ2A 1.BEST RECONSTRUCTIONS: NEX=32

Acceleration
factor = 8.5

FISTA-Symmlet

SSIM=0.935 SSIM=0.937
NRMSE=0.078 NRMSE=0.079




Parameters' influence on
TLMRI quality scores
for NEX=1



Il. NEX=1 — SSIM vs.

NEX=1 - TLMRI

0.88 ¢
0.88.
0.86 |
0.86 |
0.84 ~ 0.84 [
=
= 0.82 =
n 5 0.82}
0.8. ik
~-5=0.03
0.78 , “-5=0.045 0.8¢
$=0.06
Ob?g | -%-5=0.012:0.055
. 0.78 }
0.25 108
0.76

» Optimal value reached for v=10°.
* The sparsity fraction s has a significant impact
* A does not influence the SSIM a lot.

NEX=1 - TLMRI

—¥-5=0.03
-¥-5=0.045

s=0.06
-¥-5=0.012:0.055

10° 10° 10’ 108

on SSIM scores.

| PAGE 44



IIl. NEX=1 — NRMSE vs. A, vand s

NEX=1 - TLMRI

NEX=1 - TLMRI

-¥-5=0.03 0.35
—¥-5=0.045 -¥-s=0.03
0.35. s=0.06 —¥-5=0.045
: ¢ |¥-s=0.012:0.055 s=0.06
0.3} -¥-5=0.012:0.055

108

» Likewise, for NRMSE, there is an optimal value reached for v=10°.
* The sparsity fraction does matter.
» A does not significantly influence the NRMSE.

| PAGE 45



Il. NEX=1 — SSIM vs. patch size

NEX=1

0.88

—=—TLMRI
—— FISTA + Symmlet (best case)

0.87 ¢

SSIM

0.865 1

0.86

30 40 50 60 70 80
patch size

 For NEX=1, patch size does not influence a lot the SSIM scores.

| PAGE 46



Parameters' influence on
TLMRI quality scores
for NEX=32



lll. NEX=32 - SSIM vs. A, vand s

NEX=32 - TLMRI

0.94
0.95 . 0.92
0.9
0.9
= I
= = 0.88
v wn
0.85 D g6l
0.8 0.84 B
0.3
0.82+
0.8

A 0.1 qp4

» Optimal value reached for v=10".

NEX=32 - TLMRI

“#-5=0.03

-¥-s=0.045
s=0.06
-#-5=0.012:0.055

10° 10° 107 108

* The sparsity fraction s has a significant impact on SSIM scores

* A does not influence the SSIM a lot.

| PAGE 48



C22  Ill. NEX=32 — NRMSE vs. A, v and s

NEX=32 - TLMRI
NEX=32 - TLMRI

#-5=0.03 0.35
%-5=0.045 -5=0.03
035 s=0.06 —-5=0.045
35, —%-5=0.012:0.055 03l $=0.06
—¥-5=0.012:0.055
0.25}
0
o = 0.2}
=
0.15}
o=l —K
0.05
10° 10° 10’ 108

» Optimal value reached for v=106.
* The sparsity fraction s has an impact on SSIM scores, but less than for NEX=1
* A does not influence the SSIM a lot.

| PAGE 49



C22  Ill. NEX=32 — SSIM vs. patch size

NEX=32
0.94 . :
0.938
o--""'---.-:r | -
0.936
=
2 T S S S P
W
0.934 ¢
0.932
——TLMRI
——FISTA + Symmlet (best case)
0.93 : :

30 40 50 60 70 80
patch size

 For NEX=32, patch size does not significantly influence SSIM scores.

| PAGE 50



CONCLUSIONS

* TLMRI vs. FISTA-Symmlet

- There is a small but noticeable gain in image quality using TLMRI instead of FISTA-
Symmlet for the low SNR case of NEX=1.

- This advantage is hardly visible on the high SNR case of NEX=32.

* Parameters tuning for TLMRI

- Parameters v (data fidelity parameter) and s (sparsity fraction) have to be tuned carefully
since they influence a lot the image quality. Optimal values for the tested cases were

close to default settings of TLMRI.

- Patch sizes n and A have a small (or no) impact on the image quality.

* Algorithm durations
— One iteration in TLMRI lasts between 60 and 100 s (depending on convergence of PCG).

- One iteration of FISTA lasts about 0.75 seconds.



Thanks for your attention!

Any questions?

?

'QQ

| PAGE 52
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