

Space variant deconvolution of galaxy survey images

Jean-Luc Starck

http://jstarck.cosmostat.org

CEA, AIM/Service d'Astrophysique, France

Morgan Schmitz

Sam Farrens

Fred Nole

CosmoStat Lab

Euclid Space Mission

Euclid, ESA Cosmic Vision: launch in 2020:

• 1390 members, 220 laboratories, 16 countries

Understand the origin of the Universe's accelerating expansion

- probe the properties and nature of *dark energy, dark matter, gravity* and distinguish their effects decisively
- by tracking their observational signatures on the
- geometry of the universe: Weak Lensing + Galaxy Clustering
- cosmic history of structure formation: WL, z-space distortion, clusters of galaxies

Gains in space:

Stable data: homogeneous data set over the whole sky

- Systematics are small, understood and controlled
- Homogeneity : Selection function perfectly controlled
- Observe **15 000 deg2** during 6 years in optical and near infrared wavelength (shape)
- 1,2m Telescope, 4 bands
- Photometric redshift (distance) for **1 000 000 000** galaxies.
- Spectroscopic IR measurement of 50 000 000 galaxies.

==> 850 Gbits of data per day.

 ${\sim}150~\text{PB}$ of data in the archive .

http://www.euclid-ec.org/

CosmoStat Lab

Galaxies

Weakly Lensed Galaxies

Motivation for spatial observations

Space Variant PSF

PSF Field Estimation

Euclid PSF Modeling

- PSF Modeling
 - Undersampling
 - ➡Space dependency
 - ➡Time dependency
 - Wavelength dependency

Mage Forming Process: Stars and Point Spread Function

$\mathbf{y}_k = \mathbf{M}_k \mathbf{x}_k + \mathbf{n}_k, \ k = 1 \cdots p$

y_k: kth low resolution image
M_k: shift and downsampling operator
x_k: kth well resolved image

nk: gaussian noise

PSFextractor [E. Bertin, 2011]

$$\tilde{y}_{k,ij} = \sum_{l} \sum_{m} h(l - N(i - i_k), m - N(j - j_k)) x_{lm}$$

where h is Lanczos interpolation kernel

$$h(x) = \begin{cases} 1 & \text{if } x = 0\\ sinc(x)sinc(\frac{x}{4}) & \text{if } 0 < |x| < 4\\ 0 & \text{else} \end{cases}$$

Regularization

$$J(X) = \sum_{k=1}^{p} \sum_{i=1}^{L} \sum_{j=1}^{L} \frac{(y_{k,ij} - f_k \tilde{y}_{k,ij})^2}{\sigma_k^2} + \frac{\|X - X^{(0)}\|_{l_2}^2}{\sigma}$$

Monochromatique PSF Field Estimation

- PSF Modeling
 - Undersampling
 - Space dependency
 - ➡Time dependency
 - Wavelength dependency

What has been done:

Undersampling + space dependency = Monochromatic PSF field restoration

PSF Estimation

- F. M. Mboula, J.-L. Starck, S. Ronayette, K. Okumura, and J. Amiaux, <u>Super-resolution method using sparse</u> regularization for point-spread function recovery. A&A, 575, id.A86, 2015.
- F. Ngole, J.-L Starck, et al, "Constraint matrix factorization for space variant PSFs field restoration", submitted, 2016.

PSF Interpolatin

• F. Ngolè and J.-L. Starck, "PSFs field learning based on Optimal Transport distances", submitted, 2017

Learning the PSF subspace from subsampled observed stars

$$\mathbf{y}_k = \mathbf{M}_k \mathbf{x}_k + \mathbf{n}_k, \ k = 1..n$$

Learning technique to identify the *eigenvectors* PSF (note that PCA cannot handle subsampled data): Resolved Components Analysis (RCA)

F. Ngole, J.-L Starck, et al, "Constraint matrix factorization for space variant PSFs field restoration", in press, 2017

Our model:

$$\mathbf{PSF}^{(k)} = x_k = \sum_{i=1}^r a_{i,k} s_i$$

$$a_{i,k} = \text{ coefficient corresponding to contribution of the i-th vector to the k-th PSF.}$$

$$s_i = \text{ ith } vector \text{ (2D image)}$$

Joint estimations of super-resolved PSFs at stars positions

- Positivity constraint
- Low rank constraint: Constraint the PSFs to be a linear combination of the eigenvectors PSFs
- Smoothness constraint on each si
- Proximity constraint on the ai,k coefficients: the closer are the stars, the more the coefficients of the linear combination are similar.

PSF Graph

 a_{i1}

æ

Matrix Factorization

http://www.cosmostat.org/software/rca/

CosmoStat Lab

Monochromatic PSFs joint superresolution

Algorithm 1 Resolved components analysis (RCA)

1: Parameters estimation and initialization: Harmonic constraint parameters $(e_i, a_i)_{1 \le i \le r} \to \mathbf{V}, \mathbf{A}_0$ Noise level, $A_0 \rightarrow W_{0,0}$ 2: Alternate minimization 3: for k = 0 to k_{max} do for j = 0 to j_{max} do 4: $\mathbf{S}_{k} = \operatorname{argmin}_{\mathbf{S}} \frac{1}{2} \|\mathbf{Y} - \mathcal{F}(\mathbf{S}\mathbf{A}_{k})\|_{F}^{2} + \sum_{i=1}^{r} \|\mathbf{W}_{k,j}[:,i] \odot \boldsymbol{\Phi}_{s}\mathbf{S}[:,i]\|_{1} \text{ s.t. } \mathbf{S}\mathbf{A}_{k} \ge 0$ 5: update: $\mathbf{W}_{k,0}, \mathbf{S}_k \to \text{update}(\mathbf{W}_{k,i+1})$ 6: end for 7: $\boldsymbol{\alpha}_{k+1} = \operatorname{argmin}_{\frac{1}{2}} \|\mathbf{Y} - \mathcal{F}(\mathbf{S}_k \boldsymbol{\alpha} \mathbf{V}^T)\|_F^2 \text{ s.t. } \|\boldsymbol{\alpha}[l, :]\|_0 \le \eta_l$ 8: update: Noise level, $\alpha_{k+1} \rightarrow \mathbf{W}_{k+1,0}$ 9: $\mathbf{A}_{k+1} = \boldsymbol{\alpha}_{k+1} \mathbf{V}^T$ 10: $\mathbf{A}_{k+1}[i,:] = \mathbf{A}_{k+1}[i,:]/\|\mathbf{A}_{k+1}[i,:]\|_2$, for $i = 1 \dots r$ 11: 12: end for 13: Return: $\mathbf{S}_{k_{\max}}$, $\mathbf{A}_{k_{\max}}$.

Numerical Experiments

Data: 500 Euclid-like PSFs (Zemax), field observed with different SNRs

These PSFs account for mirrors polishing imperfections, manufacturing and alignments errors and thermal stability of the telescope.

Quality assessment : shape parameters

$$e_1(\mathbf{X}) = \frac{\mu_{2,0}(\mathbf{X}) - \mu_{0,2}(\mathbf{X})}{\mu_{2,0}(\mathbf{X}) + \mu_{0,2}(\mathbf{X})}$$
$$e_2(\mathbf{X}) = \frac{2\mu_{1,1}(\mathbf{X})}{\mu_{2,0}(\mathbf{X}) + \mu_{0,2}(\mathbf{X})}.$$

$$\boldsymbol{\gamma}(\mathbf{X}) = [e_1(\mathbf{X}), e_2(\mathbf{X})]^T$$
$$\mathbf{E}_{\boldsymbol{\gamma}} = \sum_{i=1}^p \|\boldsymbol{\gamma}(\mathbf{X}_i) - \boldsymbol{\gamma}(\hat{\mathbf{X}}_i)\|_2 / p$$
$$\mathbf{Disp}_{\boldsymbol{\gamma}} = \|\mathbf{ME}_{\boldsymbol{\gamma}}\|_{\star}$$
$$\mathbf{ME}_{\boldsymbol{\gamma}} = [\boldsymbol{\gamma}(\mathbf{X}_1) - \boldsymbol{\gamma}(\hat{\mathbf{X}}_1), ..., \boldsymbol{\gamma}(\mathbf{X}_p) - \boldsymbol{\gamma}(\hat{\mathbf{X}}_p)]$$

CosmoStat Lab

Numerical Experiments

With undersampling (upsampling factor of 2)

With undersampling (upsampling factor of 2)

PSF Interpolation

Optimal transport

G. Monge, "Mémoire sur la théorie des déblais et des remblais", 1781

PSF Interpolation

Optimal transport:

$$\mathbf{X}_5 \approx \operatorname{argmin}_{\mathbf{X}} \sum_{i=1}^4 w_i (P_5) W_2 (\mathbf{X}_i, \mathbf{X})^2$$

• F. Ngolè and J.-L. Starck, "PSFs field learning based on Optimal Transport distances", submitted, 2017.

CosmoStat Lab

PSFs interpolation

<u>Barycenter</u>

PSF Spatial Interpolation

Radial Basis Functions (RBF) based interpolation of PCA coefficients

Inverse Distance Weighting interpolation (IDW)

Interpolation quality assessment; MSE in log scale

PSF Spatial Interpolation

Radial Basis Functions (RBF) based interpolation of PCA coefficients

Inverse Distance Weighting interpolation (IDW)

Transport Interpolation (TraIn)

Residual images

0.09 0.000105 Best case 0.08 0.000090 0.07 0.000075 0.06 Medium case 0.000060 0.05 0.04 0.000045 0.03 0.000030 0.02 Worst case 0.000015 0.01 Traln Original RBF IDW

PSF Color Interpolation

Sandard deconvolution framework:

Sandard deconvolution framework:

Object Oriented Deconvolution

For each galaxy, we use the PSF related to its center pixel:

$$\underset{\mathbf{X}}{\operatorname{argmin}} \quad \frac{1}{2} \|\mathbf{Y} - \mathcal{H}(\mathbf{X})\|_{2}^{2} + \lambda \|\Phi^{t}\mathbf{X}\|_{p} \quad \text{s.t.} \quad \mathbf{X} \ge 0$$

æ

Big Astronomical Image Deconvolution

Optimisation

Algorithm: Choose the proximal parameters $\tau > 0$, $\varsigma > 0$, the positive relaxation parameter, ξ , and the initial estimate (Xo, Yo). Then iterate, for every k ≥ 0 .

1:
$$\tilde{\mathbf{X}}_{k+1} = \operatorname{prox}_{\tau G}(\mathbf{X}_{k} - \tau \nabla F(\mathbf{X}_{k}) - \tau \mathcal{L}^{*}(\mathbf{Y}_{k}))$$

2: $\tilde{\mathbf{Y}}_{k+1} = \mathbf{Y}_{k} + \varsigma \mathcal{L}(2\tilde{\mathbf{X}}_{k+1} - \mathbf{X}_{k}) - \varsigma \operatorname{prox}_{K/\varsigma}\left(\frac{\mathbf{Y}_{k}}{\varsigma} + \mathcal{L}(2\tilde{\mathbf{X}}_{k+1} - \mathbf{X}_{k})\right)$
3: $(\mathbf{X}_{k+1}, \mathbf{Y}_{k+1}) := \xi(\tilde{\mathbf{X}}_{k+1}, \tilde{\mathbf{Y}}_{k+1}) + (1 - \xi)(\mathbf{Y}_{k}, \mathbf{Y}_{k})$

- 10,000 space-based galaxy images derived from COSMOS data.
- Each image is a 41×41 pixel postage stamp around the centre of the galaxy.
- Images are free from PSF effects.

- 600 spatially varying Euclid-like PSFs
- Each galaxy image is convolved with a random PSF.
- Different levels of Gaussian noise is added.

Results

S. Farrens, F.M. Ngolè Mboula, and J.-L. Starck, "Space variant deconvolution of galaxy survey images", submitted, 2017.

<u>CosmoStat Lab</u> <u>Code available at https://github.com/sfarrens/psf</u>

Results

S. Farrens, F.M. Ngolè Mboula, and J.-L. Starck, "Space variant deconvolution of galaxy survey images", submitted, 2017.

<u>CosmoStat Lab</u>

Results

20

CosmoStat Lab

\checkmark Weak-Lensing and the Euclid Mission:

- Serious mathematical challenges
- ➡ Need the best methods to fulfil the mission requirements
- Euclid PSF: RCA is new sparsity based method which uses all available PSFs to derive the PSF field.
 F. Ngole, J.-L Starck, et al, "Constraint matrix factorization for space variant PSFs field restoration", submitted, 2016.

Perspectives

* PSF: Take into account the wavelength variation.

* CFIS: New surveys at the CFHT starting in 2017. It will be a laboratory to test new methods before Euclid.

