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INTRODUCTION
HIGH RESOLUTION
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2D T2*w axial, 7T scanner

 120 x 120 x 600 µm3

Matrix size: 1690 x 1744

21 slices, 2 averages

32-channel receiver coil, 

Motion correction

Acquisition Time  
of 50 minutes!

How can we 
accelerate this?

Stucht D, et al. PLoS ONE 2015; 10: e0133921
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One solution to reduce the acquisition time: 

Undersample the Fourier data using Compressed Sensing theory.

● Is there a practical user guide to select the appropriate 
undersampling factor in the particular case of CS-MRI ?

● How do we define « appropriate » ?

● What are the factors influencing this choice?
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INTRODUCTION
BACKGROUND

● From the traditionnal CS theory...

➔ To faithfully recover a signal with s on-zero entries:

number of required measurements: m = O(s·log(n)) where n=#pixels 

➔ Noisy case: still holds but a larger error
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INTRODUCTION
BACKGROUND

● From the traditionnal CS theory...

➔ To faithfully recover a signal with s on-zero entries:

number of required measurements: m = O(s·log(n)) where n=#pixels 

➔ Noisy case: still holds but a larger error

● … to a CS adapted to MRI 

● CSMRI [Lustig et al. 2008]

● Variable Density Sampling 

[Puy et al. 2011]

● Breaking the coherence barrier: A new theory for Compressed Sensing [Adcock et al. 
2013]

« The success of compressed sensing is resolution dependent » 

CS 
reconstruction
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INTRODUCTION
SOME INTUITIVE IDEAS

What is the maximum degree of acceleration that can be applied 
in a given situation?

 

1. The larger the image size, the more you can undersample.

2. The larger the input SNR, the more you can undersample.

Our objectives: 

● We want to verify these intuitions with simulations and experiments.

● We want to offer quantitative guidance to choose a proper 
undersampling factor as a function of image size and SNR and desired 
image quality.
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OVERVIEW

I. Materials and methods

– Simulations

– Experiments

II. Results

– Resolution dependence

– SNR dependence

– Rmax(ε, N, SNR) 

– MR feasible sampling schemes 

III. Discussion and conclusion
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II. MATERIALS AND METHODS
A. SIMULATIONS

MATERIALS and METHODS

Simulations
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II. MATERIALS AND METHODS
A. SIMULATIONS - IMAGES

● Analytical phantom of T2-like brain image (infinite SNR) 
[Guerquin-Kern et al. (2012)]

Matrix sizes: N = 128, 256, 512, 1024 or 2048

Number of pixels: n=N²

● Addition of complex-valued Gaussian noise, with growing 
standard deviation, to the Fourier data

● Calculation of the input SNR on magnitude image: 

SNR = S / σ
– S = mean signal in a ROI in white matter
– σ = standard deviation in the background

➔ SNR ranges from 6 to 110
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II. MATERIALS AND METHODS
SIMULATIONS - UNDERSAMPLING

● Retrospective undersampling factors R=N²/m ranging from 2 to 30

● Variable Density Sampling with a polynomial decay of 1/|k|²

● Example of MR feasible sampling schemes

– Radial golden angle [Winkelmann et al. (2007)]

Radial view of density Samples in  k-space 
N=512 and R=5

Not MR feasible but 
provides near upper 
bounds to sampling 

performances
Non-Cartesian

 

iid sampling

2D view of density
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II. MATERIALS AND METHODS
SIMULATIONS - RECONSTRUCTION

● L2-L1 penalized CS problem:

– NFFT [Keiner, Kunis and Potts, TU Chemnitz]

– Redundant wavelets from RICE university toolbox

– Constant regularization parameter λ=10-4

● FISTA algorithm [Beck & Teboulle (2009)]
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II. MATERIALS AND METHODS
SIMULATIONS – IMAGE QUALITY METRIC

● SSIM: The Structural SIMilarity (SSIM) index [Wang et al. (2004)]

– Measures the similarity between 2 images. 

– SSIM(I, Iref) = 0 : null correspondence.

– SSIM(I, Iref) = 1 : perfect match.

– A measure closer to the human perception of error in an image than traditional 
error metrics such as MSE or pSNR.

– MR main customer: physicians and radiologist. 

● Our choice of reference:

The corresponding full Cartesian image with a high input SNR of 110.

● What SSIM threshold?
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II. MATERIALS AND METHODS
SIMULATIONS – IMAGE QUALITY THRESHOLD

N = 512

SSIM = 0.94 SSIM = 0.9

SSIM = 0.76SSIM = 0.82SSIM = 0.82SSIM = 0.82

We choose an image 
quality threshold of:

SSIM ≥ 0.9

Reference

SSIM = 1
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II. MATERIALS AND METHODS
EXPERIMENTS

MATERIALS and METHODS

Experiments
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II. MATERIALS AND METHODS
B. EXPERIMENTS

● Ex-vivo brain baboon in fluorinert solution

● Sequence parameters
– 7T Siemens healthineers scanner

– In vivo Corp Birdcage 1Tx/1Rx coil

– T2* weigthing

– Slice thickness: 5 mm

– TR = 60 ms

– TE = 30 ms

– α = 10°

– Axial slice

● Signal averaging to increase input SNR

● Retrospective undersampling with the same samples as for simulated images

Full Cartesian acquisition N=512 of SNR = 110
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OVERVIEW

I. Materials and methods

– Simulations

– Experiments

II. Results

– Resolution dependence

– SNR dependence

– Rmax(N, SNR)

– MR feasible sampling schemes

III. Discussion and conclusion
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II. RESULTS

Resolution dependence

How should the acceleration factor be chosen
as a function of image size ?
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RESOLUTION DEPENDENCE
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RESOLUTION DEPENDENCE

High 
resolution 

Regime
Low 

resolution 
Regime

What about the 
dynamics of 

SSIM evolution?
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RESOLUTION DEPENDENCE

➢  There is a restricted 
number of authorized 
combinations:

● R=5 works for N≥256
● R=10 works for N≥512
● R=20 works for N≥2048
● ...

➢  Do these figures make 
sense on experimental 
data?
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RESOLUTION DEPENDENCE
EXPERIMENTS - VISUALIZATION

N = 512

Input SNR = 74

R = 20

R = 5

R = 30

R = 10

SSIM = 0.96 SSIM = 0.93

SSIM = 0.83SSIM = 0.88

SSIM = 1

Reference
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SNR DEPENDENCE

SNR dependence

How should the acceleration factor be chosen
as a function of SNR?
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SNR DEPENDENCE
IDEA OF A MINIMUM INPUT SNR(R,N)

SNR(R=5) ≥ 16

What about 
experimental 

data?
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SNR DEPENDENCE 
EXPERIMENTAL POINTS

Only one 
average
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II. RESULTS 
R

MAX
(Ε, N, SNR)

R
max

(ε, N, SNR)

Towards a maximum undersampling factor dependent on 
image quality threshold ε, image size N and input SNR?
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II. RESULTS
R

MAX
(   , N, SNR)

We introduce: R
max

(ε, N, SNR) = max { R: SSIM( I ; I
ref 

) ≥ ε }  

ε
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SNR DEPENDENCE

MR feasible sampling schemes

 Radial golden angle
Multiple curve sampling

How do they perform compared to pointwise samples?
Can we extend results on iid sampling to MR feasible sampling?
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II. RESULTS
MR FEASIBLE SAMPLING SCHEMES

Multiple curve - R=16 
[Chauffert et al. (2015)]

[Boyer et al. (2016)]

Radial golden angle - R=16
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OVERVIEW

I. Materials and methods

– Simulations

– Experiments

II. Results

– Resolution dependence

– SNR dependence

– Rmax(N, SNR)  

– MR feasible sampling schemes

III. Discussion and conclusion
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III. DISCUSSION AND CONCLUSION

Compressed Senging in MRI:

What is the maximum degree of acceleration that can be applied in a 
given situation?

1) About resolution dependence

● High resolution → Large subsampling factor

● Quantitative verification

● This tendency is expected to be even stronger for 3D imaging.

2) About SNR impact

● SNRmin to use a given R while preserving desired quality.

● Low SNR occur in high resolution imaging (eg: N=1024)

● High resolution CS-MRI needs to maximize the input SNR:
➔ Ultra High Field in MRI 
➔ multiple receiver coils.
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III. DISCUSSION AND CONCLUSION

3) Rmax(ε, N, SNR) as a compressed summary

4) Results on iid sampling can be extented to MR feasible sampling schemes

Iid sampling gives an near upper bound to undersampling performances.

✗ Some limitations of the study:

● Reconstruction

– Other reconstructions may lead to higher image quality

● Image quality metrics

● Results could be extented to prospective CS-MRI
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Thanks for your attention!

Any questions?
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APPENDIX
EFFECT OF REGULARIZATION PARAMETER
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