DE LA RECHERCHE A L'INDUSTRIE

CLa

www.cea.fr

Magnetic Resonance Image
Reconstruction

Philippe Ciuciu
Philippe.ciuciu@cea.fr

|IEEE MIC Educational Course
October 31t - November 1st, 2016
Strasbourg, France

@ PARIETAL e


mailto:Philippe.ciuciu@cea.fr

MRI: A WIDE RANGE OF APPLICATIONS

-JFK Aus/Clus Aus

26/08/2007
11602 pm

CMRF Open Day V1 - [A)
DOB: 3/11/1975 = =0
1 P

1G] |8}
SP: 43mm \» /
700 (il
W52 #“GE MEDICAL SYSTEMS



C22 ADVANTAGES OF MAGNETIC RESONANCE IMAGING

MRI 1 mm PET 5 mm
Xray CT SPECT PET MRI us optics
Proton density S .
- - : : eed of Light

Origin of Tissue density biochemical Biochemical +relaxation times sc?und abgorption
contrast (perfusion) (metabolism) +diffusion +density /emission

coefficients +...
Spatial 0.5to 1 mm ~10 mm 2.5t0 5 mm <1mm ~1 mm <1pum
Resolution
| i . L
dr:;t%:ng Not limited Not limited Not limited Not limited a few cm a few mm
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C22 INTRODUCTION: HISTORICAL PERSPECTIVE

« 1973: Lauterbur: first MRI image of tubes in an NMR spectrometer
« 1981:First commercial scanners < 0.2T
« 1985:1.5T MRI

« 1990: first functional MRI (Ogawa) & first diffusion tensor MR
(Moseley)

« 1998: 8T magnet at Ohio State University

« 2004:9.4T human magnet at Chicago

« 2010:17T small bore MRI for rodents at NeuroSpin/CEA, France
« Expected 02/2017: 11.7 T at NeuroSpin/CEA, France
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C22 INTRODUCTION: A LITTLE HISTORY

1977 : First image in Humans (Mansfield et al. Br. J. Radio.)

Nobel prize in Medecine 2003

Wi
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C22 INTRODUCTION: A LITTLE HISTORY

1983 : First images at 1.5T (General Electric)
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C@2 OUTLINE

Part |: Background in MRI [OPTIONAL]

Part II: Non-Cartesian MRI reconstruction

Part Ill: Iterative model-based reconstruction

Part IV: Parallel (multi-channel) imaging & reconstruction

Part V. Compressed Sensing
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Part |I: Background in Magnetic Resonance Imaging
MRI scanner

Sampling k-space & Cartesian reconstruction
Trajectories and acquisition strategies

Image reconstruction strategies
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DESCRIPTION OF AN MRI SCANNER

« A superconductor electro-magnet
= Create macroscopic magnetization from
magnetic moments of spins of certain atomic
nuclei

Static B,: Magnet 1.5T, 3T or 7T
(superconductor in liquid Helium)

« A transmit-receive radiofrequency
MRI Scanner Cutaway SyStem (RF CO”)
= Flip the magnetization and record their

relaxation to equilibrium state
125 MHz at 3T, 300 MHz at 7T

« 3 gradient coils to add variable
magnetic fields along X, Y and Z
directions

— Encode space to localize the signal in 3D
(10 to 80 mT/m)

Scanner
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C22 HOW THE THREE MAGNETIC FIELDS INTERACT

e Primary magnetic field (Bp). Align the
spins in the z-direction

e Tip the global magnetization into the
transverse (x,y) plane using a RF pulse
at Larmor frequency wg = v By.

® Release the RF pulse and measure
transverse relaxation.

e Gradient magnets. Localize the MR
signal.
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OPTIONAL SECTION DEPENDING ON THE AUDIENCE

Part I: Background in Magnetic Resonance Imaging
 MRI scanner
« Sampling k-space & Cartesian reconstruction
« Trajectories and acquisition strategies
* |Image reconstruction strategies
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Perfect reconstruction of an object would require
measurement of all locations in k-space
(infinite!)

Data is acquired point-by-point in k-space
(sampling)




2 kxma\f

What is the highest frequency we need to
sample in k-space (k™ex)?

How close should the samples be in k-space
(Ak)?
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reconstructed object
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Higher frequencies
make the
reconstruction look
more like the original
object!

Large kM@ increases
resolution (allows us to
distinguish smaller
features)

reconstructed object
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C22 CHOOSING MAXIMAL FREQUENCY

2D Extension

increasing

kmmf

~ Max
k,

|
max
-k,

2 ](-I??Z ax

kmax determines image resolution
Large k™ means high resolution !




C22 NYQUIST SAMPLING THEOREM

A given frequency must be sampled at least twice per
cycle in order to reproduce it accurately

1 samp/cyc 2 samp/cyc

Cannot distinguish Upper waveform is
between waveforms resolved!




C22 NYQUIST SAMPLING THEOREM

VARV

- - - P
increasing field

NA /L

Insufficient sampling
forces us to interpret
that both samples are
at the same location:

aliasing




C22 ALIASING ARTIFACT

Aliasing (ghosting): inability to differentiate between 2 frequencies
makes them appear to be at same location

Ty I

[
5

o

-

max Jive :Applied FOV; max Jive Aliased image

frequency frequency




C22 K-SPACE RELATIONS: FOV & RESOLUTION

FOV = 1/Ak,

AX = 1/(2*kxmaX)

2 kxmar




C22 K-SPACE RELATIONS: FOV & RESOLUTION

xmax = 1/Ak,

2 k,max = 1/Ax

2 kxmar

k-space and image-space are inversely related:
resolution in one domain determines extent in other




C22 STANDARD MR IMAGE RECONSTRUCTION

Measured signal Reconstructed
(frequency-, or k-space) image

FT can be applied in any number of dimensions
MRI: signal acquired in 2D frequency space (k-space)

(Usually) reconstruct image with 2DFT




DE LA RECHERCHE A L'INDUSTRIE

C22 PARTIAL FOURIER

Full sampling /& ' EllgLiS‘;/

Full-FOV,

Reduce kmax | : S | low-res:
= blurred

Low-FOV,
high-res:
may be
aliased

Increase Ak




Part |I: Background in Magnetic Resonance Imaging
 MRI scanner
« Sampling k-space & Cartesian reconstruction
* Trajectories and acquisition strategies
* Image reconstruction strategies
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C22 K-SPACE TRAJECTORY MODELING

Mathematical modelling:
Let & : [0, T] = RY, (d = 2, 3) denote the sampling curve. We have:

Zl
)
~
p
I

F;'(O)-i—’,v/o G(r)dr

d=2, G=(GxGy). &=(keky)

Figure: Spiral imaging: Pulse sequence (Left) and corresponding sampling trajectory (Right).

‘ K-space location is proportional to accumulated area under e
gradient waveforms




C22 K-SPACE TRAJECTORY CONSTRAINTS

The gradient encoding G should satisfy: The G field is called gradient encoding, it
should satisfy:

® ||G|loc < Gmax: bounded gradient magnitude, (eg, 70 mT.m~1).

o ||('E||m < Smax: bounded slew rate, (eg, 300 T.m~1.s71).

Admissible sampling curves

An admissible sampling curve in MRI is a curve belonging to the set:

_, d = =
Smrli = {h S (62([01 D) s lflloo < @ =7 Gmax, [[E]loc < B = ?’-SmBX}

Similar to driving a car on the Fourier plane.
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C22 EXAMPLES: RASTER-SCAN 2D DFT ACQUISITION

Acquire k-space line-by-line (usually called “2DFT")
Gy causes frequency shift along x: “frequency encode” axis
Gy causes phase shift along y: “phase encode” axis




C22 EXAMPLES: ECHO PLANAR IMAGING (EPI)
— ACQUISITION

Single-shot (snap-shot): acquire all data at once




C22 IMAGE QUALITY VS. ACQUISITION TIME

Line acquisition vs. EPI

Image accumulated over
multiple line acquisitions

Slow: 5-10 minutes

Excellent image quality

Image acquired in single
acquisition

Fast: 3 seconds

Image artefacts




C22 IMAGE QUALITY VS. ACQUISITION TIME

Line acquisition vs. EPI

Anatomical =
(structural)
images

R e
L i
- 5
) ‘V . -
» 4 -
y - -

k-space image space

| > Fourier _
' transform Tl e

:: p— il g

SV — a R
— diffusion — -
— imaging —
|
|




C22 MANY POSSIBLE TRAJECTORIES THROUGH K-
— SPACE

(a) 2DFT (spinm:(arp} (b) EPI {echo—plfnar)




C22 NON-CARTESIAN MR IMAGE RECONSTRUCTION

‘k-space” data
y=01,---,Yu)

k-space trajectory: spatial coordinates:
k() = (kalt), By(1)) FeR?




Part |: Background in Magnetic Resonance Imaging
« MRI scanner
« Sampling k-space & Cartesian reconstruction
* Trajectories and acquisition strategies
* |Image reconstruction strategies
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C22 TEXTBOOK MRI MEASUREMENT MODEL

m lgnoring lots of things, the standard measurement model is:
vi=s(ti))+n i=1...m

s(t) = /x(F)e_EME{ﬂ'FdF: 2(R(t)).
e 1. spatial coordinates

e ri(t): k-space trajectory of the MR pulse sequence

e f(r): object’s unknown transverse magnetization

=]

e x(R): Fourier transform of x(7). We get noisy samples of this!

—2awR(t) - F

e e provides spatial information

m Goal of image reconstruction: find x(F) from measurements {y;}/_,

e The unknown object x(F) is a continuous-space function, but the recorded
measurements y = [y1, ..., ym]' are finite!
e Under-determined (ill posed) problem = No canonical solution.

All MR scans provide only “partial” k-space data.
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C22 IMAGE RECONSTRUCTION STRATEGIES (1/2)

m Continuous-continuous formulation
e Pretend that a continuum of measurements are available:

%(R) = / x(F)e 2R dF .

e [he “solution” is an inverse Fourier transform:

x(F) = / 2R g

e Now discretize the integral solution:
m
E(F) _ E :}%(E{.)ehﬂm;-r ~ E :y‘;w‘;EEzﬂﬁyr!

where w; values are “sampling density compensation factors”. Numerous methods for
choosing w; values in the literature.

e For Cartesian sampling, w; = 1/m —= the summation is an inverse FFT.

e For non-Cartesian sampling, replace summation with gridding (see Section Il).
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C22 IMAGE RECONSTRUCTION STRATEGIES (2/2)

m Continuous-discrete formulation
e Use many-to-one linear model:

y=Hx +n, where H:Ly(RY)— C™.
e Minimum norm solution (cf. “natural pixels™)

X(F) = argmin ||x||3 subject to y = Hx
x€ Lo (RY)

m
= H* (HH*)ly =D ce®™ 7 where HH'ec=1y
i=1

m Discrete-discrete formulation
Assume parametric model for object:

x(7) =3 xp5(7)
j=1

e Estimate parameter vector @ = (xq¢, ..., x,) from data vector y.
56



Part II:Non-Cartesian MRI reconstruction




C22 NON-CARTESIAN MRI

. K-space trajectory does not fall on a Cartesian grid:
Spiral, radial, Lissajou
L
2 Gy & P b Spiral Lissajou

=
)

. Faster, more robust to motion than Cartesian MRI

. But reconstruction is more complicated ...
358



C22) RECONSTRUCTION OF NON-CARTESIAN MRI

— DATA

. Direct FFT won’t work

. Radial MRI: backprojection reconstruction, like in CT
. In general:

- Compute the inverse DFT according to the trajectory (slow). Cf
Conjugate Phase reconstruction.

- Regridding: resample the non-Cartesian MRI data onto a 2D
Cartesian grid and apply inverse FFT (fast)
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C22 K-SPACE RESAMPLING METHODS

. Grid-driven interpolation: estimate the value at each
grid point based on the immediately surrounding data

Advantages:

« Easy to implement if the location of neighboring
data can be determined analytically
* No density compensation required

Drawbacks:
 Don’t use all the input data (less SNR efficient)

- Quality of image reconstruction is a trade-off between interpolator
complexity and k-space oversampling
- In practice: seldom used
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C22 K-SPACE RESAMPLING METHODS

Data-driven interpolation: take each data point and add
Its contribution to the surrounding grid points

Convolution Kernel

/
-

k-Space Trajectory

> - Convolve with a k-space kernel.
- Evaluate the convolution at the adjacent grid
Advantage: points.

« All data points are used: more SNR efficient

Drawback:

 Require density estimation & compensation 61



C22 MATHEMATICAL DESCRIPTION OF GRIDDING

— RECONSTRUCTION
e Non-Cartesian sampling function: S(;{_ﬂky):z(s(k ~k, .k, —k, )

x.1?

- mShah (or Comb) Function:

e Sampled data: .,

+oo +oo

(k)= > o(k«—n)= > d(kc+n)

n=—omx0 n=— oo

¢ Convolution wi
the Cartesian g

e Sampling property:

- [ (k) f (kx) = Z f(n)3(kx — n)
M (k,.k,) = (M@ e

e Replicating property:

T11(ky) Z f(ke — n)
e After applying t n=—oc

X y
FOv, FOV,

m(x,y) = [(m(x_, V) Es(x, v))e(x, y)] 1]

362




C22 EFFECTS OF REGRIDDING OPERATIONS

A
1D lllustration m(x.y) Original sianal
1] L__J-_} QJ gJ
o
A X
m(x,y)«s(xy) . .
+
L \_‘—‘ Blurring + side lobes
-\ [~
A X

(m(x,y)=s(x,y))c(x,y)

rf \kw Apodization
s, — r
X

b [(mxy)sstoy)etey)] o
AllvrovyFov)  Replication

T T
! i
! i
- — s —— = - o

X
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C22 SIMPLE REGRIDDING

« 5 point triangular kernel

Radial k-space Spiral k-space
200x200 grid 128x128 grid

Without density compensation, low frequency artifacts dominate
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C22 REGRIDDING DESIGN CONSIDERATIONS

« Non-Cartesian sampling trajectory
v' Sampling pattern (PSF) & sidelobes
v Density compensation

« Convolution kernel
v Apodization
v Aliasing
v' Computation time

« Oversampling

v Aliasing
v Apodization
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C22 VARIABLE DENSITY SAMPLING (1/2)

« Non-Cartesian trajectories perform a variable-density sampling
of k-space
Radial S(kz, ky) Spiral Variable Density 3

x 10

E |5
1

Radial: The central point is acquired N times (# the number of spokes)

‘ Non-uniform k-space weighting

£

[

N
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C22 VARIABLE DENSITY SAMPLING (2/2)

« Non-Cartesian trajectories perform a variable-density sampling

of k-space o
Lissajou
- J_ky_ o a) Density L

| |
| |

f | |
' Ly Kx

4 ) -Kmax 0 max

Y “ Ky

| ' b) Impulse Response (Point Spread Function)

s(x) = Fip{S(ks)}
...................... 1T
PSF 2D: s(x,y) = F "{S(ks, k) } VSidelobes:

Not perfect localization

ldeally the PSF should be an impulse but it is not in practice!
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E LA RECHERCHE A LINDUSTRIE

C2a SAMPLING DENSITY COMPENSATION (1/4)

* Pre-compensation (ideal)
— Sampling density (p) must be pre-computed

Mk k )[{M(k"k-")S(kx,k )J*C(kx,k )]x]ﬂ{ k }
y (k. k) ’ ’ Ak’ Ak,

x? 7y

X

— Using geometry | 1/p(k)

For radial MRI:

1 [(Ak\? 2n )1
= 7 =~ (Ak)*=
"o T(z) N Bk

— Assign an area to each k-space sample (humerical method)

e E.g. Voronoi diagram
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C22 SAMPLING DENSITY COMPENSATION: VORONOI

[Rasche et al, IEEE TMI 1999]

Nine-interleave k-space spiral Voronoi diagram
0.5 T T T | — T T T 0-5 - ' - " Tdla[e]afala L T 7 =)
——— R I
03 % N\ given sample oa--:‘%‘:r'fl@%?ﬁ
. LA 835 ...-'ﬂ;_"'m'-.- 4’!’#@ e T
&&&Mﬁgﬁ&tﬁﬁw* 000 Asaeinta
> N R S
0 X 0P
0.1 0.1 FEES
0.2 0.2 BT
-0.3 0.3 2
X
0.4 0.4
-'g. ) %5 -04 -03 -0.2 -01 E 01 02 03 04 05
X

Density approximated as the inverse of the area of these regions
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C22 SAMPLING DENSITY COMPENSATION (3/4)

« Post-compensation (after the gridding operation)

|
plk,.k,)

Mk, k)=

kK
(M (K, ke )S (e, k) ) Clk, })]x]]]( s ]

e Find p by regridding M(](T,k_‘)=1

. | k. Kk
p(kﬂky)z[(M(k k)S(k k) ) Clk,. kﬂxm{ Ak AkJ

« It works well if the sampling pattern does not change too rapidly
« The gridding convolution kernel blurs the effect of rapid density

changes
370



C22 EFFECT OF DENSITY COMPENSATION ON MR

— IMAGE RECONSTRUCTION (4/4
Radial Spiral

Without
density
compensation

With
density
compensation

s

Aliasing 371



C22 CONVOLUTION KERNEL (1/3)

« The ideal kernel would be an infinite sinc (impractical)

A
ldeal Kernel Ideal Apodization
sinc(ky/Aky) rect(x/fov)
_FoV/2 FOV2 ™ x
mmmmm) [nfinite support!
* Windowed sinc
. . A
Windowed Sinc Kernel Windowed Sinc Apodization
\ Wiky)sinc(ky/Aky) rect(x/FOV)*w(x)
ky = S e T
Ly - b D
VvV Ky —FOV/2 FlV/Z X
1 1 1

372

= kw nlAky 7 Aliasing



C22 CONVOLUTION KERNEL (2/3)

« Small kernels: Save computing time

A
Single Lobe Gridding
Kernel
“Ak, Ak, ks

 If the kernel width is wider than that of the windowed sinc, the
corresponding apodization function is narrower in space

‘ Aliasing reduced at the cost of FOV 373



Kaiser-Bessel function: smooth lowpass filter
v Best kernel (by consensus) [Jackson et al, IEEE TMI 1991]

C(k)= %I 0 {b(l — 2%] Jrect(;f]

s
l,: zero-order modified Bessel function 7
of the first kind :-
W: width of the kernel I a— = - 2
b: scaling parameter k (k-space samples)
(b)
— Inverse Fourier transform 3
sin(x/ T*Wx* —b? ) °
c(x) = - :
N
-L2 0 L2

, , 374
x (image distance)



C22) OVERSAMPLING THE CARTESIAN GRID

 Removes aliasing

) Reduces apOdlzathn [O’Sullivan, IEEE TMI 1985]

1X Grid

__________

et

—FOV FOV/2 FOV

| Oversampled Grid

-afOV

o1, (“ﬁ“}’)‘ m(e,y) = [(m(z,y) = s(z,y)) cle,y))
¥ ¥

x Y
«[11 . -
( aFOV, alF OV, )

(Deapodization neglected) 375



C22 OVERSAMPLING THE CARTESIAN GRID

2X grid

Crop in
the image
domain

Spiral i 1) ] | @ G :
NI . @ .

NP4

Radial
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02 DEAPODIZATION

« Divide the reconstructed image by the inverse Fourier transform of
the regridding kernel

— Without deapodization
= With deapodization

e M

Without deapodization

With deapodization

(T

377



C22 WHY THE KAISER-BESSEL KERNEL IS

~— PREFERRED?

* Lower oversampling factor (save memory)
[Beatty et al, IEEE TMI 2005]

Triangular Kaiser-Bessel

LTI (111NN

1.5X grid
FFTW package:

fftw.org

Fast implementations
of FFT for a whole
range of lengths

1.25X grid

378


fftw.org

C22 SUMMARY OF REGRIDDING RECONSTRUCTION

« Compute the non-Cartesian sampling pattern
* Choose the regridding kernel (e.g. Kaiser-Bessel)
« Density pre-compensation (if possible)

« Convolve the pre-compensated data with the regridding kernel and
evaluate the convolution at the oversampled Cartesian grid

* Apply inverse 2D FFT
« Apply the deapodization function
« Apply post-density post-compensation (optional)

 Remove the oversampling by cropping the image 379



Part Ill: Iterative Model-based image reconstruction
e Least squares solution
 Regularized Least Squares
 Beyond quadratic regularization

Prof. Jeff Fessler



C22 MODE-BASED IMAGE RECONSTRUCTION

Why lterative Image Reconstruction?

m “Non-Fourier” physical effects such as field inhomogeneity (ABp)
m Incorporate prior information, e.g.:
e Support constraint
e Piecewise smoothness
e Phase constraints
m No density compensation needed
m Statistical modeling may reduce noise

Primary Drawbacks of lterative Methods?

m Algorithm speed
m Complexity, e.g. choosing regularization parameter(s)

381



C22 BASIC SIGNAL MODEL

vi=s(ti) +ni, Elyi] = (t)—/ (F)e2mKiT dF.

m Goal: Reconstruct x(r) from y = (y1, ..., ym).

e Series expansion of unknown object: x(F) =~ z; 1 X p(F— Fj)

— Usually p(+) 2D rect functions.

e Substituting into signal model yields:

E|yi] —/Z}gp F—F)e 2TRiT dF =

j=1 j=1

n |:/P(F B U}e Etrhr rd j

FT.

n
=S hyxg, by = BRI p(F) £L p(R)
-

m Discrete-discrete measurement model with system matrix H = {h;j}:

y=Hx+n

m Goal: estimate coefficients (pixel values) @ = (x1, ..., xp) from .
382



LEAST SQUARES ESTIMATION

m Estimate object by minimizing a simple cost function:

e Data fidelity term ||y — ITa||? corresponds to negative log-likelihood of Gaussian
distribution

e Equivalent to Maximum likelihood (ML) estimation under white noise assumptions

m Issues:
e Computing minimizer rapidly
e Stopping iteration
e Image quality

383



C22 ITERATIVE MINIMIZATION BY CONJUGATE

— GRADIENTS

m CG Algorithm:

Data: y

Result: Reconstructed MR image @

Choose initial guess () (e.g., by gridding)

for k + 1 to Kjter do

gk = v T (2K = iz — 4) (Gradient)
pk) = Pg(k) (Preconditioning)

0, k=0
oy, — (k) p(k)
Tk <g P _> k>0
(gt=1) p(k=1))

dk) = —p(k) 4 ~, dk=1) (Search direction)
v(K) = Frdk)

alk) = <d[k], —g“‘]> /|[v®) |2 (Stepsize)
z(kt1) = 2(k) 4 o, d(k) (Update)

m Bottlenecks: Computing Hax(k) and H*r:
e H is too large to be stored explicitly (not sparse)
e Even if H were stored, directly computing Ha is O(mn) per iteration whereas

FFT is only O(mlog m).

384



C22a COMPUTING THE FORWARD PROBLEM RAPIDLY

m Computing Hax rapidly

n

n
Hax|. = hiix; = p(R; e TR =1, . ...m
[ I J | J

e Pixel locations {Fj} are uniformly spaced
e k-space locations {FK;} are unequally spaced

— needs nonuniform fast Fourier Transform (NUFFT or NFFT)
[Fessler and Sutton, 2003, Potts and Steidl, 2003].
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m Compute over-sampled FFT of equally spaced signal samples
m Interpolate onto desired unequally-spaced frequency locations
W [Dutt and Rokhlin, 1993]: Gaussien bell interpolator

W [Fessler and Sutton, 2003]: Min-max interpolator and min-max optimized Kaiser-Bessel
interpolator.

e NUFFT toolbox: https://www.eecs.umich.edu/fessler/code/
e NFFT toolbox: https://www—-user.tu-chemnitz.de/ potts/nfft/




C22 FURTHER ACCELERATION USING TOEPLITZ

— MATRICES

m Cost function gradient:

g¥ = H*(H2¥) — y)=T=z¥) — b

where T2 H*H, b= H*y.

m In the absence of field inhomogeneity, the Gram matrix T is Toeplitz:

m

[T]jf. = Z

i=1

ﬁ(g{_ﬂ?e—hﬂﬁ;-[ﬁ—ﬁﬂ'

m Computing T (k) requires an ordinary (2x oversampled) FFT [Chan and Ng, 1996] by
T B ]

embedding T in a 2n X 2n circulant matrix C = [ B T

e In 2D, block Toeplitz matrix with Toeplitz blocks (BTTB).

e Precomputing the first column of T and b requires a couple of
NUFFT [Eggers et al., 2002, Liu et al., 2005].

m T his formulation seems ideal for “hardware” MRI systems. 387



C22 UNREGULARIZED EXAMPLE: SIMULATED DATA

Phantom Object 4 x under—sampled radial: 6760
—2 mAr—= v

. *
. *
*
w *
. ® "
.
*
s
. *
*
-
P

. ow ' . w = *
- P
* "
* A
s * P
* . w ¥

—
PR I
ccccc
&
. ®

s ® & 4

= % ¥
.....
.............
w m #
& & m

+++++
11111
............
'''''
+ .
L * 8
* .
......
------

- LA
‘‘‘‘‘‘‘
* LA Y
----
rrrrr
*
* o

L
LI
* .
*
- .,
LA
-
* .

« 4x undersampled radial k-space data

* Analytical k-space generation
388



 lterations: 1:4:60 of unregularized CG reconstruction




C22 UNREGULARIZED EXAMPLE: RMS ERROR

Unregularized CG
I

Zero image

NRMS Error (%)
<

30F
20k '-,\ Noisy LS image
10} e
"Best" image?
0 : ' ' I I
0 10 20 30 40 0 %0

lteration

« Complexity: When to stop ‘ A solution: regularization



C22 UNREGULARIZED EIGENSPECTRUM

: Eigenvalues of A’'A for 4x under—-sampled radial, 32x32
10

10° Y

2

Q

- 6

> 107 o

0 .

D -

u'} [#]

10"} G
B Y—_—d

10
0

1024
index
Bad conditioning i.e. extremely large condition number = 1029 59



C@22 REGULARIZED EXAMPLE: IMAGE COMPARISON

True | Unregularized | Edge preserving regularization

392



REGULARIZED EXAMPLE: RMS ERROR

100 . .
——Unregularized
|\ - - Regularized
80¢
L
— 60F
o
m
2
= 40F
pr
20F
O ] ] ] ] [']
0 10 20 30 40 50 60
CG lteration 303



C22 REGULARIZED LEAST SQUARES ESTIMATION

m Estimate object by minimizing a regularized criterion:

z =argminJ(x) J(x)=|y— Hz||” +aR(x)
xecCn

o Data fidelity term ||y — H x|/

e Regularizing term R(a) controls noise by penalizing roughness:

R(x) ~ / V(7)1 dF

e Regularization parameter & > 0 controls trade-off between spatial resolution and
noise

e Equivalent to Bayesian MAP estimation with prior oc e~ ®R()
m Complexities:
e Choosing R(x)

e Choosing o

e Computing minimizer rapidly 394



C22 QUADRATIC REGULARIZATION

m 1D example: Squared differences between neighboring pixel values:

n

1 1
R(z) =) =[x —x-1|* = =[|C=|?
- 2
j=2
1 1 0 o0 0 B
0 -1 1 0 0 X2 — X
0 0O 0 -1 1 Xn — XXn—1

m For 2D and higher-order differences, modify differencing matrix C'.

m Closed-form solution:

& = argmin ||y — Hz|? + a||Cx|?
ecCh

= |H"H + o CrC]_lH*y

(A formula of limited practical use for computing ). 395



C22 CHOOSING THE REGULARIZATION PARAMETER

m Spatial resolution analysis [Fessler and Rogers, 1996]:
E[z] = [H*H + o C'C] 'H*E[y]
— [H*H +a C'C] "H*Hua

— :T + @ CtC} “lra

L

i

blur

mT and C'C are Toeplitz = blur is approximately shift-invariant.

m Blurring operating in the frequency domain:

T'(w)
(w) + aR(w)

o T(wyx)=FFT(Te;) = FFT(H* Hej) (low-pass filter)

L(w) = -

o R(wy) = FFT(C'Cej) (high-pass filter)

m Adjust o to achieve desired spatial resolution.
396



C@2 SPATIAL RESOLUTION EXAMPLE

aC'Ce; PSF

-10 0 10 -10 0 10

L(w)
T T .
<0 0 g 0
_']'E _'J'E , _n
T 0 T —T 0 T n 0 -
L] W o

X

Radial k-space trajectory, FWHM of PSF is 1.2 pixels 397



C@2 SPATIAL RESOLUTION EXAMPLE: PROFILES

800

600 ——— -

200 | — f,,x

L(w) os —K\

0.6

) 0 m 398



C22 RESOLUTION/NOISE TRADE-OFFS

m Noise analysis:

Cov|Z| = [H*"H + « CtC}_IH*CDV ly|H|H*"H + « CfC]_l
— [T 4+ o CfC} “LH*Cov [n} H[T + CrC] -t

m Using circulant approximations to T and C'C vyields:

var[X;] &~ o2 e
ol n; (T (wk) + aR(wk))?

o T(wk)= FFT(Te;) (low-pass filter)
o R(wy) = FFT(C*Cej) (high-pass filter)
— Predicting reconstructed image noise requires just 2 FFTs.

m Adjust o to achieve desired spatial resolution/noise trade-off.
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C22 RESOLUTION/NOISE TRADE-OFFS EXAMPLE

—%— Uﬁder—samp-led radial
—%— Nyquist-sampled radial
—=—Cartesian '

-
je’
ks
>
O
o
©
|
®
o
c
S
»
o
2
©
)
o

14 1.6
PSF FWHM [pixels]

In short: one can choose «a rapidly and predictably for quadratic regularizé{?f)on



C221 NON-QUADRATIC REGULARIZATION

m Quadratic regularization is simple and reduces noise but impairs spatial resolution.
m Non-quadratic regularization attempts to circumvent this trade-off

e Edge-preserving regularization has been intensively investigated for MRI:

n

R(z) =" Sw((Cal))

j=1
where W rises less rapidly than a parabola
e Ex. Hyperbola function: W(t) 2 §%(1/1+ (t/5)2 — 1). [Charbonnier et al, IEEE IP 997]
2 o
e Ex. Huber function: W(t) a { t/2 t] <9

St —82/2  |t| > 6

m Challenges

e Choosing regularization parameter(s)
e More complicated optimization (essentially solved in the convex case)
e Analysis/prediction of resolution and noise properties is difficult.

401



C22 NON-QUADRATIC POTENTIAL FUNCTIONS

Quadratic vs Non—quadratic Potential Functions

—— Parabola (quadratic)
- - - Huber, 6=1
Hyperbola, 6=1

Lower cost for large differences ‘ edge preservation



C@2 EDGE-PRESERVING REGULARIZATION EXAMPLE

True Quadratic Edge-preserving

NRMS=126% NRMS =11.0%

403



C22 MODE-BASED IMAGE RECONSTRUCTION

m MR signal equation with more complete physics:

—

S(t) — /.X(F] SCDH(F‘)E—[ZM(F’}—I-R;(F'}}IE—EZ?TE[t]-r dF
yi=s(ti)+ni, i=,....m

® Scoil: Receiver coil sensitivity pattern(s) (for SENSE)

e w(F): Off-resonance frequency map
(due to field inhomogeneity/magnetic susceptibility)

¢ R} =1/T5: Relaxation map

m Other physical factors:

e Eddy currents: errors in E(t)

e Concomitant gradient terms (cross-talks)
e Motion
®

Goals?
403-bis



C22y FIELD INHOMOGENEITY -CORRECTED

— RECONSTRUCTION

m Key reference [Sutton et al., 2003, Fessler et al., 2005]

m Motivation: Critical for functional MRI in brain regions near air/bone
interfaces (e.g., sinus cavities)

—

s(8) = [ X()Seoi()e™ (<R e 2mRO7 g

B Goal: Reconstruct x(7) given field map w(r)
(Assume all other terms are known or unimportant).

403-ter



Part IV: Parallel imaging

404



C22 BACKGROUND: MRI IS SLOW...

MRI IS S.0Wae,
ARE WEDO/VE?

. /
<,
’ c%;// W}‘{y? yop‘“ 2o00o

I. % ~

‘Q Yozer

| W, A

' \gb € Veey, Xs
g OAnq ~ 0t |

/

Michael Lustig, http://www.eecs.berkeley.edu/~mlustig/CS.html
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C22 BACKGROUND: WHY IS IT SO SLOW?

The sampling frequency should be at least twice
the highest frequency contained in the signal

If not... becomes...

Aliasing
artifact

(Zhang et al. 2013)

406



DE LA RECHERCHE A L'INDUSTRIE

Cea

—— at high resolution iso-200um

Babouin_PostMortem HRA NeuroSpin
Investigational_Device_7T
*08/107/1984, O, 30V MR B17
HFS

STUDY §
23072014 e
1000 MA 0 /6 %

*08/0711984, O, 30Y

STUDY §
230772014

1000 IMA 076

Babouin_PostMortem HRA

NeuroSpin
Investigational_Device_7T
MR B17

HFS

+LPH

1000 IMA 0/ 6

RAF

MF 1.00

TR 400

TE20.0

B 40.0

MPRMPR SPH19.5
. : SLO.2

A1 o . Tra=Sag(3.7)=Cor(3.2)

*I3d F13 Warning: displayed position is not the actual acqu... \é‘ 5388

MF 1.00 A
TR 40.0 TR 40.0
TE 200 | TE 2000
B 40.0 . B 40.0
MPRMPR SPLggs | MPRMPR P lioTy
SL02 sLo2
Al Sag=Cor(-18.9)=Tra(-4.1) | &1 Cor=Sag(19.0)=Tra(0.8)
*i3d 13 Warning: displayed posttion is not the actual W 2000 | *fi3a 13 Warning: displayed postion is not the actual ac... W:zo00
Babouin_PostMortem ALF NeuroSpin
1 Investigational_Device_7T
*08/07/1984, O, 0¥ MR B17
HFS
STUDY 5 1
230712014 ; Lt

Not
applicable
for
humans!

EXAMPLE: 3D-image of Baboon whole Brain T2*

Matrix: 1024x1024x256
~270 million samples!!
1 average only!

| J »
Ci ." C »
[
.. dald C .-
ourtesy or A ghaud &
-
O
40



C22 UNDERSAMPLING TO REDUCE ACQUISITION TIME

» Can we reduce the acquisition time by measuring fewer samples and still be
able to reconstruct nice images?

UNDERSAMPLING

Multiol ) Possible Sinal .
u tlp e receilver combination Ingle receiver

coils < > coil

Compressed

SMS Parallel _
Sensing

Imaging Partial Fourier

/’

/

~

Limitations: - R = acceleration factor < 6
- SNR drops rapidly with R 408



C@2 OBJECTIVES OF PARALLEL IMAGING (PMRI)

Combining the signal of multiple colls
v Reduce scan

time

v Improve spatial
/ temporal
resolution

v Limit geometric
distorsions

X Decrease the
SNR

X Non-
homogeneous
coils

a Acquisition with four coil elements
(coil sensitivity profiles shown)

k b Raw data and temporary images J

409



C22 EXAMPLE IN ANATOMICAL MRI

Reduce scanning time at fixed spatial resolution

1x1x1.1mm3—914" R=2—1x1x1.1mm3—503" R=4—1x1x1.1 mm3— 259"

Standard acquisition Parallel acquisition Parallel acquisition

410



C22 EXAMPLE IN FUNCTIONAL MRI (EPI SEQUENCE)

Improve spatial resolution at fixed TR

3x 3% 3mm3 — 514" R=2—2x2x3mm> — 514"

Standard acquisition Parallel acquisition Parallel acquisition

411



E LA RECHERCHE A LINDUSTRIE

Cea PARALLEL MRI PRINCIPLE

(@]

= SET D SEP BES

© I i

O o000 -0--0--9

8 b-o-v--0-0-0-0--9

o Ih-—--l---l---l---l---l--l—--+ . '
8 p--&--n--i--i--i------q'- I---l---l----l---l---l---l---ql
® S : '
& - -

a

Standard acquisition parallel acquisition
using R=2

412



C22 SPATIAL COIL SENSITIVITIES

se(t) :fxm Se(Pe ™R Tgr, =1, ...

vie =se(ti)+nje, i=,....m

413



DE LA RECHERCHE A LINDUSTRIE

Ccea PARALLEL MRI RECONSTRUCTION TECHNIQUES

\/\.

N - :
- SMASH " ¥ \ .
+Auto-SMASH | | [ pACE'P‘\P > : $%hllziES _
. VD-auto-SMASH \E/ s

- GRAPPA

Ak, ¢

-\.

FOV

101 414



K-SPACE ACQUISITION

Full k-space

T 1
sampling FF1 q
k-space
Under-sampling FET-! 1/2 FOV
(R=2)

|

Acceleration factor

Aliasing artifacts

415



K-SPACE ACQUISITION

Full k-space -
sampling FET i
k-space
Under-sampling FFT-1 1/2 FOV
(R=2) -
Acceleration factor y(r) = x(ry) + x(r)

416



ITIVITY NCODING IMAGING

[Pruessman et al, MRM 1999]

2 coils
R=2

y1(7) = S1(F)x (7)) + S1(7)x (1) + ny (F) y(@) = S;(F)x (1) + S, (R)x (1) + np ()

Fy= 7o u ['yl(f) IAGY 51<r2)] [x(rl)] [nl(f)
y2(7) S,(1)  S(7)] Lx(7) n, (1)

417



ITIVITY NCODING IMAGING

: [Pruessman et al, MRM 1999]
L coils r

R acceleration factor

k f ;
yi(7) = S (F)x () + Sy ()x(Fp) + ... + S (FR)x(TR) + ny(F)
i) [S1G) . SR [xED] ()] 22 FOVy,
)’2.(77) _ 52(.771) SZ(.FR) x(fz) + n;(?) S 7R
—:VL.(F)- —SL(.Fl) SL(.FR)— X(FR) -nL.(F)—

m)> Y (7) = S(F) x(7) + n(7)

Simultaneous reconstruction of R pixels of the full FOV image 418



C22 COMPLEX-VALUED DATA

Subscript - g: real part R{-} of the data.
Subscript «j: imaginary part ${-}

IYR (7_"))] _ [5}2 (r) -5 (7_”))] [xR (7_”))] n [nR (r)
v () S5 @) 5@ 1 Lx () n;(7)

)y () =S¢ @) x¢ ) + ne(@

419



e e A cpusnee ESE“QE;EEFQEK:C)BNSTTQIJ(:Twc}hJ

m SENSE reconstruction: Least squares formulation

e Complex circular noise vector corrupting all channels: n(F)
e Noise covariance: Cov [HC(F)HC(F]] =Ws(F—r')

e lterate over positions r:

Zc(F) = argmin ||y (F) — Sc(Azc(7)|g -1

mGECL
#o(7) = [Sc(PPe1Sc(R] " So(reyo(P)

e Or more globally:

Zc =argmin Y |lyc(F) — Sc(Pzc(F)|5 -1
ec€C" ropov

420



C22 RESULTS AT 1.5 TESLA

 Artifacts appear for large values of R

421



C22 RESULTS AT 3 TESLA FOR R=4

 Coronal slice: same effect in the FOV center

Reference Image SENSE Reconstruction (R=4)




C22 REGULARIZED SENSE RECONSTRUCTION

m [ikhonov regularization

e In case of reference image @ o5 ...

ccel” | mepov

To =argmin | Y [lyc(F) — Sc(Mzc(Alg -1 + Allzc(F) - mref(a2j|

423



C22 REGULARIZED SENSE RECONSTRUCTION

m [otal variation regularization

Tc = arg min Y llye(R) — Sa(Pzc(F)g-1 | + A IVacll
*cEXT | FeFOV

with A > 0 a regularization parameter.

R=4

A=0.001

424



C@2 WAVELETS ENTER INTO THE GAME ...

MR images: sparse in the wavelet domain

o &
Haar’s
1D-wavelet P
Spatial domain Wavelet domain
Daubechies’ IL ‘ Gauss-Laplace pdf
2D-wavelet _
Image histogram Wavelet subband histogram

. Improved spatial and frequency artifact localization
. Simple and accurate statistical model in the wavelet space 425



C22 WAVELETS ENTER INTO THE GAME ...

m Wavelet-based (synthesis approach) regularization:

xc =Ta and @ = argminJ(a)
acCn

J(a) = Ji(a) + J2(e)
m Data fidelity term reformulation in the Fourier domain:

Ji(a) = Ti(Ta) = > |lyc(?) — Sc(Azc()]3 -1

FEFOV
L
= Z Yo — FnSfTﬂHA_l
=1

m Wavelet-based or synthesis penalization:

Jmax

Z‘Da(&a m) + Z Z Zq}od(&od m) 426

=1 oe{h,v.d} m



C22 PROXIMAL OPERATORS (1/3)

» proximal operator of f: R" — RU{+00} is

p= A S A R U T T s T WA | 1“%)
with parame
» f may be nc
» evaluating ¢ ‘ion problem

ry often has an
gorithm

» can evaluate
analytical sc

427



e BROX, OPERATOR: GENERALIZED PROJECTION
C2a (o3

» proximal operator of an indicator function of a convex set is

projection:

prox,;.(v) = Il¢(v) = argmin ||z — v||2

> many properties carry over

reC

» example: projection onto box C = {x | l < & < u} given by

(He(v))r = <

(1 o <l

vl vk < uy

| Uk U 2 Ug

428



C22 PROX. OPERATOR: SEPARABLE SUM (3/3)

» if f is block separable, so f(z) = Zil fi(x;), then
(prox;(v)); = prox;. (v;), i=1,....N

» key to parallel /distributed proximal algorithms

» example: if f=| -1, then

rtri — A v > A
prox, (1) = (0= A)y — (—v— Ay =40 |u <A
| Vi + A v < =A

» in general: if f = || || and B is unit ball of dual norm, then

Proxy f(’”) = v — Allg(v/A) 429



C22 PROXIMAL GRADIENT ALGORITHM

minimize  f(x) + g(x)
f is smooth

g:R" — RU{+o0} is closed proper convex

» method:
Ik—l—l - pI'OXA.E:g (;’Ek o /\kvf(lh))

» converges with rate O(1/k) when V f is Lipschitz continuous with
constant L and step sizes are A\¥ =\ € (0,1/L]

» special case: projected gradient method (take g = I¢)

» traces back to Bruck, Lions, Mercier (1970s)
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C22 FORWARD BACKWARD OPTIMIZATION

i1

Algorithm:
- extraction ol 74
~1 L .
Q”._J.L'_ f"”. ik
e
extraction of 7 - gradient
~ A

1
o E_J”j }?”:' E_J?,:ﬂj?fl—'_}l' (pl OX., ill‘ - (( f} s m,_ﬁ [VJ {”{” )]f},,]-,m,) _”E;t,l{m,)

) N
¥ [le]ﬂ,.l'_,?n. = 1 + 1.7 W)

f'.”{.{‘{ﬂ‘”l_jl-r”} f.”n]{fh.ll_‘l'l-r”}
* A €|0,1] : relaxation parameter

* v €]0, Ymax| © step-size parameter

®:R—-R —> proxe . R—>R
430-bi 2 sign(¢) _
is = alg] + B¢ £ 26+ 1 max{|¢| — a, 0}




C22 WAVELET-BASED RESULTS

SENSE (SNR = 13.78 dB) UWR-SENSE (SNR = 15.83 dB)

[Chaari et al, IEEE ISBI 2008]




C22 CONSTRAINED REGULARIZATION

B Constrained Problem

Find min 7, + 75

o~
ll'_']'.'tw._-‘h"

Find min.7, + 7,
e

where C' is a nonempty closed convex subset of CH

<> Find min 7/, + 75 + ¢

acCh

0, if e C

where V' € C, 1(7) = .
+oc, otherwise

[Chaari et al, MedIA 2011]

w2 s




C@2 CONSTRAINED CONVEX OPTIMIZATION

In practice:

C={aecCr | vieD, Re(Te)(") € I}* . Im((Te)(7)) € L'}

where T8¢ = [IR¢ (7), 18 (7] , I = [ (7), 1™ ()] and D

min
corresponds to the artifact areas.

Algorithm:

ot — o /\(pr{}xh N h.f_g{ai”'j' -~V (a{”j)) — a{”j)

We use a Douglas-Rachford algorithm to iteratively compute
prox, ..z [Pustelnik et al. , EUSIPCO 08].

[Chaari et al, MedIA 2011]
433



C22 CONSTRAINED WAVELET-BASED RESULTS

R=4

UWR-SENSE (SNR = 15.83 dB) CWR-SENSE (SNR = 16.04 dB)

[Chaari et al, MedIA 2011]

434




C22 ANALYSIS & SYNTHESIS REGULARIZED RESULTS

TV-SENSE (SNR = 13.39 dB) CWR-SENSE (SNR = 16.04 dB)

W-TV-SENSE (SNR = 16.37 dB)

[Chaari et al, MedIA 2011]
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TV-SENSE (SNR = 13.39 dB)  CWR-SENSE (SNR = 16.04 dB)

Os

W-TV-SENSE (SNR = 16.37 dB)

[Chaari et al, MedIA 2011] .
436 7
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C22 3D REGULARIZATION & RECONSTRUCTION

Ly —ﬁ LLL 1
Hy — | [ Limi
Ly (1 LHL1
" Hy —@ LHH 1
Ly 1 HLL1

Ly
; Hy — ﬁ HLH 1
H
[Chaari et al, IEEE ISBI 2011] Ly — ﬁ HHL 1
Hy
Hy — ﬁ HHH 1
Rows Columns Slices

Trouver mm{ J1(C) + J2(¢) + 21c(C)

i
L=k

437



DE LA RECHERCHE A LINDUSTRIE

CeA 3D REGULARIZATION & RECONSTRUCTION

LLL 1

LLH I

LHL 1

LHH 1

- v
Original
Volume

HLL 1

HLH 1

Ly —@ HHL 1
Hy —@ HHH 1

Rows Columns Slices
> &1(Tpc) = ; Oo((Tpc)ak) +2-22 ; ®oi((Trc)o.k)
o J

where O = {LLL,LLH, LHL,LHH, HLL, HLH, HHL, HHH}
and

Vo € O, b, ;(£) =0Re(&) + dl(¢)
—(wBRe(€)])od + (I Tm(&)[)Ped 438

[Chaari et al, IEEE ISBI 2011]
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C22 3D UWR-SENSE SEGMENTATION RESULTS

mSENSE

3D-UWR-SENSE

[Chaari et al, MAGMA 2014] 439



Nicolas Chauffert Carole Lazarus Alexandre Viggnaud
CEA /NeuroSpin CEA /NeuroSpin CEA /NeuroSpin

Part V. Compressed Sensing in MRI

Pierre Weiss Claire Boyer Jonas Kahn
CNRS/ITAV IMT, U. Toulouse CNRS/IMT
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C@2 COMPRESSED SENSING CONCERN: WHEN IMAGE

— ACQUISITION MEETS IMAGE RECONSTRUCTION

Reducing scanning time in MRI

e Improve patient comfort
¢ Reduce distortions due to patient movement
e Reducing scanning costs

* Improve either spatial, temporal or angular resolution (MRI/fMRI/dw-MRI)

Let « : [0,1]9 — C be an image and & denote its Fourier transform.

Our objective: reconstruct & such that || — x||2 < e
Minimize Te under the constraint that there exists g : [0, Tc] — R s.t.

e G and E:-' are uniformly bounded.

e Sampling the curve K(t) generates a set

y(R) = {&(R(kAt)) }eqo.....T. /(a0)}

that allows reconstructing & with precision e. 141



C@2 COMPRESSED SENSING CONCERN: WHEN IMAGE

— ACQUISITION MEETS IMAGE RECONSTRUCTION

Let @ : [0,1]9 — C be an image and @& denote its Fourier transform.

Our objective: reconstruct  such that || — x||p < e
Minimize T. under the constraint that there exists g : [0, T¢] — R s.t.

e G and (E are uniformly bounded.

e Sampling the curve E(t) generates a set

y(7) = {&(R(kAt)) teeqo.....T. /(a0)}

that allows reconstructing & with precision e.

Questions...

¢ How to choose the measurements (or locations in k-space)?
e How to find R(t)?

e How to reconstruct & knowing y(&)?

442



C2A COMPRESSED SENSING IN MRI

443



C2A COMPRESSED SENSING IN IRM

 What images?
* What samples?
* What reconstruction technique?

[Lustig et al, MRM 2007]




C248 COMPRESSED SENSING RECIPE

Data is sparse, compressible, redundant...
Sense the compressed information directly!

Donoho, Tao,
Romberg, Candes

* VARIABLE DENSTTY RPADOM, RAPTAL , SPLRALS .
TSPARSITY ENFORCTAG RECONSTRUCTION ,
SUCH AS: MINTMUM § - NORM

Michael Lustig, http://mww.eecs.berkeley.edu/~mlustig/CS.html

445



C2A  WHAT SPARSITY AND COMPRESSIBILITY MEAN?

1. Sparsity/Compressibility

IS not sparse...

Sparse ... but compressible!

(spars),

adj. sparseer, sparseest.

1. Thinly scattered or distributed; not thick
or dense.

2. Scanty; meager.
(http://www.thefreedictionary.com/sparse)

Wavelet Represensation... is sparse!

Compressible

1. There exists a basis where the
representation has just a few large
coefficients and many small coefficients.
2. Compressible signals are well
approximated by sparse representations

3 levels of
decomposition

446
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CZ2A COMPRESSED SENSING RECIPE (1/3)

* Increase sparsity by changing the image decomposition

Is not sparse. ..
... but compressible!

Wavelet decomposition of MRI scan is sparse!

Redundant transforms
@ induces sparser
decompositions a

3 levels of

decompaosition "-\,‘L\" =y
\

Curvelets
Starlets, shearlets

447




CZA COMPRESSED SENSING THEORY (1/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Pa, where o € C" is s-sparse.
e Acquisition matrix: H = F*®.

Let T C {1, --- ,n} and Hr = (h?‘);er. We acquire a measurement vector:

y = Hra+b.

F*oa = Ha Hr o

448



CZA COMPRESSED SENSING THEORY (2/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = P, where a« € C" is s-sparse.
e Acquisition matrix: H = F* .

Let T C {1,--- ,n} and Hr = (h})jer. We acquire a measurement vector:

y= Hra+b.

F*oa = Ho

(1 reconstruction (promoting sparsity)

zeC r‘nIlIn =y ||Z||1 449

b~ ]



CZA COMPRESSED SENSING THEORY (3/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Pa, where o € C" is s-sparse.
e Acquisition matrix: H = F*®,

Let ' € {1,~+;n}-and Hr-= (h;f‘),-er. We acquire a measurement vector:

y= Hra+b.

F*oa = Ho

or in case of noise (Synthesis formulation):

& = Argmin ||y — Hrz||3 + \||z|)1 (FISTA algorithm) 450

ze(Cn



CZA COMPRESSED SENSING THEORY (4/4)

Compressed sensing theory:
e x is sparse in a given basis (e.g. wavelets): @ = Pa, where o« € C" is s-sparse.
e Acquisition matrix: H = F*®,

Let I C {1,---,n} and Hy = (h?‘),-er. We acquire a measurement vector:

y= Hra+b.

F*ba = Ho

or in case of noise (Analysis formulation):

£ = Argmin ||y — F* a3||% + A||[®* 2|4 (ADMM algorithm) 451

xecCn



CZA  THEORETICAL RESULTS (1/2)

A first CS theorem [Candes and Plan, 2011]

Theorem

Construct I' by uniform and i.i.d. drawing the lines of H .
Let @ be a sparse vector, containing s non-zero entries. Assume that:

n
>C-s-(n- hill?, ) -log [ — 1
m>Cose (- max el ) -log (©) 1)

where C is a universal constant. Then, with probability 1 — 1, a is the unique solution

of:

Fourier CS

transform 5% reconstruction

)

uniform

-

random
sampling
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FROM UNIFORM RANDOM UNDERSAMPLING TO VDS

2. Pseudo-random sampling

« Non-uniform sampling « Variable Density Sampling

(Lustig et al. 2007, Chauffert et al. 2013, Puy et al. 2011)

Uniform sampling

Non-uniform sampling

Lustig et al. 2008 453



C2A  THEORETICAL RESULTS (2/2)

Theorem [Chauffert et al., 2013]

Let @ be an arbitrary s-sparse vector. Let (Jk)ie(1,...,m} denote a sequence of i.i.d.
random variables taking value i € {1, ..., n} with probability p;. Generate a random
set [ ={J1,....Jm} and measure y = Hra. Take n €]0, 1] and assume that:

h 2
m>=C-s- max | k”mln (E>
kE{l,...,n} P ]

where C is a universal constant. Then with probability 1 — 1 vector x is the unique
solution of the following problem:

e 1 z||1.

Optimal distribution 7 oc ||hy|2..
h.ll?
Coherence is now  max IRz = Z |hi]l?, = O(log(n)) in MRI.
k

ke{l,....n}  Pi
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Cea ILLUSTRATION OF VARIABLE DENSITY SAMPLING

lllustration of optimal sampling strategy for H = F*W (MRI)

Shannon
Wavelets

min 2D min 3D

Example of sampling pattern obtained in 2D :
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C2A FROM THEORY TO PRACTICE

® From the traditionnal CS theory...

=2 To faithfully recover a signal with s on-zero entries:
number of required measurements: m :@log(n)) where n=#pixels

2 Noisy case: still holds but a larger error

5%
Variable density cS
e ... to a CS adapted to MRI random' sampling  ffEREREIY

-

* CSMRI [Lustig et al. 2008]

* Variable Density Sampling

[Puy et al. 2011]

* Breaking the coherence barrier: A new theory for Compressed Sensing [Adcock et al.
2013]

« The success of compressed sensing is resolution dependent »
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CS-MRI AND EXISTING RESULTS

e CS must comply with MR hardware constraints

7T MRI
t
S 5 2 Gll < Gpgy = 50 mTm™1
K(t) =k(0) + G(uw)du I . max
(8) = K(0) yfo () IGIl < Gax ~ 333 Tm~151
» Regular trajectories

YYYYYYYYYYY
,.-..‘
e ioat”
A4
'\

A -
Lustig et al. 2008

Easy implementation: undersampling standard MR trajectories!

Radial for cardiac cine MR imaging (Winkelmann et al. 2007)
. Spiral or noisy spirals (Lustig et al. 2005)
. Poisson disk sampling (Vasanawala et al. 2011)
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C2A CS-MRIAND EXISTING RESULTS

» CS is not used to its full potential!
* Hindered randomness
« Variable density sampling not fulfilled

CS-MRI is sub-optimal! [Lustig et al., 2007]

« K-space not well covered or oversampled in one direction

» Undersampling factor generally limited to :

R<10
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NEED OF NEW MR UNDERSAMPLING SCHEMES

» New trajectories developed by Nicolas Chauffert during his PhD

« Projection of an image on a measure set of... points (image halftoning)

v Target
probability
density

« Repulsion sampling »
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C229 NEED OF NEW MR UNDERSAMPLING SCHEMES

» New image approximation techniques
[Chauffert et al, Construct. Approx., 2016]

« Projection of an image on a measure set of...

v Target
probability
density

v Cinematic
constraints

v' Coverage
speed
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C229 NEED OF NEW MR UNDERSAMPLING SCHEMES

» Application to design of k-space trajectories
[Chauffert et al, IEEE TMI 2016; Chauffert et al, SIAM Imaging Sci 2016]

-

x 10

Variable Density

+

G|l < Gpqy = 50 mTm™1
|Gl < Gpgx = 333 Tm ™ 1s™1

5

=

v Target
probability
density

v' Gradient
constraints

v' Coverage
speed
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DE LA RECHERCHE A LINDUSTRIE

NEED OF NEW MR UNDERSAMPLING SCHEMES

» Application to design of k-space trajectories
[Chauffert et al, IEEE TMI 2016; Chauffert et al, SIAM Imaging Sci 2016]
* Projection of a target density on a measure set of...

v Target
probability
density

v Gradient
constraints

v' Coverage
speed
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VERY HIGH RESOLUTION IMAGING: SIMULATION
A serue

Parameters:
Image size: n = 2048 x 2048 (100 pm isotropic). m = 0.048n decomposed in:

e 196 radial lines of 1, 024 equispaced samples
e 3 rotated versions of the same spiral made up by 25,000 samples

e 8 curves of 25,000 samples each
463



VERY HIGH RESOLUTION IMAGING: SIMULATION
A serue

MRI| hardware constraints:

® Grax = 40mT.m ! and Spax = 150 mT.m 1. ms— 1.

e For proton imaging, v = 42.57 MHzT-! — a=1,703m 1 ms ! and
B =6,386m" 1. ms 2.
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DE LA RECHERCHE A L'INDUSTRIE

ced VERY HIGH RESOLUTION IMAGING: COMPETING
T— TRAJECTORIES (1/2)

re : Standard sampling schemes composed of 200,000 samples. (a):
Radial lines; (c): 8 interleaved spirals.




VERY HIGH RESOLUTION IMAGING: COMPETING

TRAJECTORIES (2/2)
(d)

Zoom

Figure : Sampling schemes yielded by our algorithm and composed of 200,000 samples. (d):
isolated points with repulsion; (e): 8 feasible curves in MRI. 466



CZ2Q VERY HIGH RESOLUTION IMAGING CS RESULTS (1/2)

(a) SNR=26.7 dB (b) SNR=20.6 dB (c) SNR=21.0dB

(radial)



VERY HIGH RESOLUTION IMAGING CS RESULTS (2/2)

(d) SNR=27.0dB (e) SNR=23.5dB

468

(m-points measure) (admissible curve for MRI)



C2a CS SUMMARY

e Higher undersampling factor achievable at higher resolution: 20-fold
acceleration/undersampling

e Better performance achieved in terms of image quality (SNR, pSNR, SSIM) using
isolated points (projection on m-points measure)

e Projection on admissible curves for MRI outperforms radial and spiral sampling

schemes
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