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MRI: A WIDE RANGE OF APPLICATIONS 



PET 5 mm  MRI 1 mm 

Proton density 

+relaxation times 

+diffusion 

coefficients +... 

SPECT MRI X ray CT 

Origin of 

contrast  

Spatial 

Resolution 

biochemical 

(perfusion)  
Tissue density 

2.5 to 5 mm  < 1 mm  0.5 to 1 mm  

PET 

Biochemical 

(metabolism)  

~ 10 mm  

US optics 

Speed of 

sound 

+density 

Light 

absorption 

/emission 

Imaging 

depth 
Not limited Not limited Not limited Not limited a few cm a few mm 

~1 mm  < 1 µm  

ADVANTAGES OF MAGNETIC RESONANCE IMAGING 
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• 1973: Lauterbur:  first MRI image of tubes in an NMR spectrometer 

• 1981: First commercial scanners < 0.2T 

• 1985: 1.5T MRI 

• 1990:  first functional MRI (Ogawa) & first diffusion tensor MRI 

(Moseley) 

• 1998: 8T magnet at Ohio State University 

• 2004: 9.4T human magnet at Chicago 

• 2010: 17T small bore MRI for rodents at NeuroSpin/CEA, France 

• Expected 02/2017: 11.7 T at NeuroSpin/CEA, France 
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INTRODUCTION: HISTORICAL PERSPECTIVE 



1977 : First image in Humans (Mansfield et al. Br. J. Radio.) 

 

Nobel prize in Medecine 2003 
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INTRODUCTION: A LITTLE HISTORY 



1983 : First images at 1.5T (General Electric) 
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INTRODUCTION: A LITTLE HISTORY 



  

 

 Part I: Background in MRI [OPTIONAL] 

 

 Part II: Non-Cartesian MRI reconstruction 

 

 Part III: Iterative model-based reconstruction 

 

 Part IV: Parallel (multi-channel) imaging & reconstruction 

 

 Part V: Compressed Sensing 

OUTLINE 
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OUTLINE 

Part I: Background in Magnetic Resonance Imaging 
• MRI scanner 

• Sampling k-space & Cartesian reconstruction 

• Trajectories and acquisition strategies 

• Image reconstruction strategies 
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DESCRIPTION OF AN MRI SCANNER 

331 

• A superconductor electro-magnet 

 Create macroscopic magnetization from 

magnetic moments of spins of certain atomic 

nuclei 

Static B0: Magnet 1.5T, 3T or 7T 

(superconductor in liquid Helium) 

 

• A transmit-receive radiofrequency 

system (RF coil) 

 Flip the magnetization and record their 

relaxation to equilibrium state 
125 MHz at 3T, 300 MHz at 7T 

 

• 3 gradient coils to add variable 

magnetic fields along X, Y and Z 

directions 

 Encode space to localize the signal in 3D 

(10 to 80 mT/m) 



HOW THE THREE MAGNETIC FIELDS INTERACT 
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OUTLINE 

Part I: Background in Magnetic Resonance Imaging 
• MRI scanner 

• Sampling k-space & Cartesian reconstruction 

• Trajectories and acquisition strategies 

• Image reconstruction strategies 

OPTIONAL SECTION DEPENDING ON THE AUDIENCE 

333 
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SAMPLING K-SPACE 

334 
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SAMPLING K-SPACE 
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What is the 
maximum 

frequency we 
need to measure? 

 
Or, what is the 
maximum k-

space value we 
must sample 

(kmax)? 

FT 

kmax -kmax 

FREQUENCY SPECTRUM 
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FREQUENCY SPECTRUM 
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FREQUENCY SPECTRUM 
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FREQUENCY SPECTRUM 

335-d 



FREQUENCY SPECTRUM 

335-e 



FREQUENCY SPECTRUM 

335-f 



Higher frequencies 
make the 

reconstruction look 
more like the original 

object! 
 

Large kmax increases 
resolution (allows us to 

distinguish smaller 
features) 

FREQUENCY SPECTRUM 

335-g 
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CHOOSING MAXIMAL FREQUENCY 
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NYQUIST SAMPLING THEOREM 

337 
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NYQUIST SAMPLING THEOREM 

338 
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ALIASING ARTIFACT 

339 
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K-SPACE RELATIONS: FOV & RESOLUTION 

340 
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K-SPACE RELATIONS: FOV & RESOLUTION 

341 



STANDARD MR IMAGE RECONSTRUCTION 

342 



PARTIAL FOURIER 
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OUTLINE 

Part I: Background in Magnetic Resonance Imaging 
• MRI scanner 

• Sampling k-space & Cartesian reconstruction 

• Trajectories and acquisition strategies 

• Image reconstruction strategies 
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K-SPACE TRAJECTORY MODELING 

K-space location is proportional to accumulated area under 

gradient waveforms 
345 



K-SPACE TRAJECTORY CONSTRAINTS 

346 



EXAMPLES: RASTER-SCAN 2D DFT ACQUISITION  
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EXAMPLES: ECHO PLANAR IMAGING (EPI) 

ACQUISITION 
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IMAGE QUALITY VS. ACQUISITION TIME 

349 



IMAGE QUALITY VS. ACQUISITION TIME 

350 



MANY POSSIBLE TRAJECTORIES THROUGH K-

SPACE 

351 



NON-CARTESIAN MR IMAGE RECONSTRUCTION 
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OUTLINE 

Part I: Background in Magnetic Resonance Imaging 
• MRI scanner 

• Sampling k-space & Cartesian reconstruction 

• Trajectories and acquisition strategies 

• Image reconstruction strategies 
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TEXTBOOK MRI MEASUREMENT MODEL 

354 



IMAGE RECONSTRUCTION STRATEGIES (1/2) 

355 



IMAGE RECONSTRUCTION STRATEGIES (2/2) 
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OUTLINE 

Part II:Non-Cartesian MRI reconstruction 

Prof. John Pauly 



NON-CARTESIAN MRI 

• K-space trajectory does not fall on a Cartesian grid: 
Spiral, radial, Lissajou 

 

 

 

 

• Faster, more robust to motion than Cartesian MRI 

• But reconstruction is more complicated … 

 

 

Spiral Lissajou 
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RECONSTRUCTION OF NON-CARTESIAN MRI 

DATA 

• Direct FFT won’t work 

• Radial MRI: backprojection reconstruction, like in CT 

• In general:  

- Compute the inverse DFT according to the trajectory (slow). Cf 
Conjugate Phase reconstruction. 

- Regridding: resample the non-Cartesian MRI data onto a 2D 
Cartesian grid and apply inverse FFT (fast) 
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K-SPACE RESAMPLING METHODS 

• Grid-driven interpolation: estimate the value at each 
grid point based on the immediately surrounding data 

 Advantages:  

•   Easy to implement if the location of neighboring 

data can be determined analytically 

• No density compensation required  

Drawbacks:  

•   Don’t use all the input data (less SNR efficient) 

- Quality of image reconstruction is a trade-off between interpolator 

complexity and k-space oversampling 

- In practice: seldom used 
360 



K-SPACE RESAMPLING METHODS 

• Data-driven interpolation: take each data point and add 
its contribution to the surrounding grid points 

 

Advantage:  

•   All data points are used: more SNR efficient 

Drawback:  

•   Require density estimation & compensation 

- Convolve with a k-space kernel. 

- Evaluate the convolution at the adjacent grid 

points. 

361 



MATHEMATICAL DESCRIPTION OF GRIDDING 

RECONSTRUCTION 

362 



EFFECTS OF REGRIDDING OPERATIONS 

Original signal 

Blurring + side lobes 

1D Illustration 

Apodization 

Replication 
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SIMPLE REGRIDDING 

• 5 point triangular kernel 

364 

Without density compensation, low frequency artifacts dominate 



REGRIDDING DESIGN CONSIDERATIONS 

• Non-Cartesian sampling trajectory 

 Sampling pattern (PSF) & sidelobes 

 Density compensation 

 

• Convolution kernel 

 Apodization 

 Aliasing 

 Computation time 

 

• Oversampling 

 Aliasing 

 Apodization 
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VARIABLE DENSITY SAMPLING (1/2) 

• Non-Cartesian trajectories perform a variable-density sampling 

of k-space 

 Variable Density Spiral Radial 

Radial: The central point is acquired N times (# the number of spokes) 

Non-uniform k-space weighting 

366 



VARIABLE DENSITY SAMPLING (2/2) 

• Non-Cartesian trajectories perform a variable-density sampling 

of k-space 

 
Lissajou 

Sidelobes: 

Not perfect localization 

Ideally the PSF should be an impulse but it is not in practice! 

(Point Spread Function) 

PSF 2D:  
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SAMPLING DENSITY COMPENSATION (1/4) 

• Pre-compensation (ideal) 

 

368 



SAMPLING DENSITY COMPENSATION: VORONOI 

DIAGRAM (2/4) 

Nine-interleave k-space spiral Voronoi diagram 

Density approximated as the inverse of the area of these regions 

Region for a 

given sample 

369 

[Rasche et al, IEEE TMI 1999] 



SAMPLING DENSITY COMPENSATION (3/4) 

• Post-compensation (after the gridding operation) 

 

• It works well if the sampling pattern does not change too rapidly 

• The gridding convolution kernel blurs the effect of rapid density 

changes 
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EFFECT OF DENSITY COMPENSATION ON MR 

IMAGE RECONSTRUCTION (4/4) 
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CONVOLUTION KERNEL (1/3) 

• The ideal kernel would be an infinite sinc (impractical) 

• Windowed sinc 

Infinite support! 
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CONVOLUTION KERNEL (2/3) 

• Small kernels: Save computing time 

• If the kernel width is wider than that of the windowed sinc, the 

corresponding apodization function is narrower in space 

Aliasing reduced at the cost of FOV 373 



CONVOLUTION KERNEL (3/3) 

• Kaiser-Bessel function: smooth lowpass filter 

 Best kernel (by consensus) 

374 

[Jackson et al, IEEE TMI 1991] 



OVERSAMPLING THE CARTESIAN GRID 

• Removes aliasing 

• Reduces apodization 

(Deapodization neglected) 375 

[O’Sullivan, IEEE TMI 1985] 



OVERSAMPLING THE CARTESIAN GRID 

376 

Radial 

Spiral 



DEAPODIZATION 

• Divide the reconstructed image by the inverse Fourier transform of 

the regridding kernel 
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WHY THE KAISER-BESSEL KERNEL IS 

PREFERRED? 

• Lower oversampling factor (save memory) 

FFTW package: 

fftw.org 

 
Fast implementations 

of FFT for a whole 

range of lengths 

378 

[Beatty et al, IEEE TMI 2005] 

fftw.org


SUMMARY OF REGRIDDING RECONSTRUCTION 

• Compute the non-Cartesian sampling pattern 

 

• Choose the regridding kernel (e.g. Kaiser-Bessel) 

 

• Density pre-compensation (if possible) 

 

• Convolve the pre-compensated data with the regridding kernel and 

evaluate the convolution at the oversampled Cartesian grid 

 

• Apply inverse 2D FFT 

 

• Apply the deapodization function 

 

• Apply post-density post-compensation (optional) 

 

• Remove the oversampling by cropping the image 379 



OUTLINE 

Part III: Iterative Model-based image reconstruction 
• Least squares solution 

• Regularized Least Squares 

• Beyond quadratic regularization 

 

Prof. Jeff Fessler 



MODE-BASED IMAGE RECONSTRUCTION 
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BASIC SIGNAL MODEL 

382 



LEAST SQUARES ESTIMATION 

383 



ITERATIVE MINIMIZATION BY CONJUGATE 

GRADIENTS 
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COMPUTING THE FORWARD PROBLEM RAPIDLY 

385 



NUFFT (TYPE 2) 

385 



FURTHER ACCELERATION USING TOEPLITZ 

MATRICES 
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UNREGULARIZED EXAMPLE: SIMULATED  DATA 

• 4x undersampled radial k-space data 

• Analytical k-space generation 
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UNREGULARIZED EXAMPLE: IMAGES 

• Iterations: 1:4:60 of unregularized CG reconstruction 
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UNREGULARIZED EXAMPLE: RMS ERROR 

• Complexity: When to stop A solution: regularization 
390 



UNREGULARIZED EIGENSPECTRUM 

• Bad conditioning  i.e. extremely large condition number ⋍ 1020 391 



REGULARIZED EXAMPLE: IMAGE COMPARISON 

392 



REGULARIZED EXAMPLE: RMS ERROR 
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REGULARIZED LEAST SQUARES ESTIMATION 

394 



QUADRATIC REGULARIZATION 

395 



CHOOSING THE REGULARIZATION PARAMETER 

396 



SPATIAL RESOLUTION EXAMPLE 

𝑻𝒆𝒋 𝜶𝑪𝒕𝑪𝒆𝒋 PSF 

𝑻(𝝎) 𝑹(𝝎) L(𝝎) 

Radial k-space trajectory, FWHM of PSF is 1.2 pixels 
397 



SPATIAL RESOLUTION EXAMPLE: PROFILES 

𝑻(𝝎) 

𝑹(𝝎) 

L(𝝎) 
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RESOLUTION/NOISE TRADE-OFFS  
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RESOLUTION/NOISE TRADE-OFFS EXAMPLE  

In short: one can choose 𝛼 rapidly and predictably for quadratic regularization 
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NON-QUADRATIC REGULARIZATION 

401 

[Charbonnier et al, IEEE IP 997] 



NON-QUADRATIC POTENTIAL FUNCTIONS 

Lower cost for large differences edge preservation 
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EDGE-PRESERVING REGULARIZATION EXAMPLE 

403 



MODE-BASED IMAGE RECONSTRUCTION 

403-bis 



FIELD INHOMOGENEITY –CORRECTED 

RECONSTRUCTION 

403-ter 



OUTLINE 

Part IV: Parallel imaging 

404 



BACKGROUND: MRI IS SLOW… 

Michael Lustig, http://www.eecs.berkeley.edu/~mlustig/CS.html 
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BACKGROUND: WHY IS IT SO SLOW? 

If not...    becomes… 

 

 

 

 

Harry Nyquist 

 The sampling frequency should be at least twice 

the highest frequency contained in the signal 

Aliasing 

artifact 

(Zhang et al. 2013) 
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EXAMPLE: 3D-image of Baboon whole Brain T2*  

at high resolution iso-200m 

Nova Medical 1Tx/32Rx 

 

Natif SNR7.6 (WM) 

FOV 205x205x52mm3 

 

Matrix: 1024x1024x256 

~270 million samples!! 

1 average only! 

 

Displayed Reco: 

0.2x0.2x0.2mm3 

 

TA2h54min 

 

Raw data size: 137GB 

Dicom data size: 1.0GB 

 
(Courtesy of A. Vignaud & S. 

Mériaux) 

Not 
applicable 

for 
humans! 
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UNDERSAMPLING TO REDUCE ACQUISITION TIME 

UNDERSAMPLING 

Multiple receiver 
coils 

SMS 
Parallel 
Imaging 

Single receiver 
coil 

Partial Fourier 
Compressed 

Sensing 

Limitations: - R = acceleration factor ≤ 6 

      - SNR drops rapidly with R 

Possible 

combination 

 Can we reduce the acquisition time by measuring fewer samples and still be 

able to reconstruct nice images? 
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Combining the signal of multiple coils 

 

✓ Reduce scan 

time 

✓ Improve spatial 

/ temporal 

resolution 

✓ Limit geometric 

distorsions 

 

✘ Decrease the 

SNR 

✘ Non-

homogeneous 

coils 

OBJECTIVES OF PARALLEL IMAGING (PMRI) 

409 



EXAMPLE IN ANATOMICAL MRI 

Reduce scanning time at fixed spatial resolution 

Standard acquisition Parallel acquisition Parallel acquisition 

410 



EXAMPLE IN FUNCTIONAL MRI (EPI SEQUENCE) 

Improve spatial resolution at fixed TR 

Standard acquisition Parallel acquisition Parallel acquisition 
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PARALLEL MRI PRINCIPLE 

P
h
a
s
e
 e

n
c
o
d
in

g
 

Frequency encoding 

Standard acquisition parallel acquisition 
using R=2 

412 



SPATIAL COIL SENSITIVITIES 

413 
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PARALLEL MRI RECONSTRUCTION TECHNIQUES 
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Full k-space 
sampling 

k-space 
Under-sampling 

(R=2) 

Acceleration factor 

K-SPACE ACQUISITION 

Aliasing artifacts 
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K-SPACE ACQUISITION 

Full k-space 
sampling 

k-space 
Under-sampling 

(R=2) 

Acceleration factor y 𝑟 = 𝑥 𝑟1 + 𝑥 𝑟2  

𝑥(𝑟1) 

𝑥(𝑟2) 
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[Pruessman et al, MRM 1999] 
2 coils 
R=2 

SENSITIVITY ENCODING IMAGING 

𝑦1 𝑟 = 𝑆1 𝑟 1 𝑥 𝑟 1  + 𝑆1 𝑟 2 𝑥 𝑟 2  + 𝑛1 𝑟  𝑦 𝑟 = 𝑆2 𝑟 1 𝑥 𝑟 1  + 𝑆2 𝑟 2 𝑥 𝑟 2  + 𝑛2 𝑟  

𝑦1 𝑟 

𝑦2 𝑟 
=  

𝑆1 𝑟 1 𝑆1 𝑟 2
𝑆2 𝑟 1 𝑆2 𝑟 2

 
𝑥 𝑟 1
𝑥 𝑟 2

+ 
𝑛1 𝑟 

𝑛2 𝑟 
 

𝑟 1 = 𝑟  

𝑟 2 = 𝑟 +
𝐹𝑂𝑉𝑦

2
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[Pruessman et al, MRM 1999] 
L coils 
R acceleration factor 

𝑦𝐿 𝑟 = 𝑆𝐿 𝑟 1 𝑥 𝑟 1  + 𝑆𝐿 𝑟 2 𝑥 𝑟 2  + … + 𝑆𝐿 𝑟 𝑅 𝑥 𝑟 𝑅  +  𝑛𝐿 𝑟  

L 

𝑦1 𝑟 

𝑦2 𝑟 
⋮

𝑦𝐿 𝑟 

=  

𝑆1 𝑟 1 … 𝑆1 𝑟 𝑅
𝑆2 𝑟 1 … 𝑆2 𝑟 𝑅
⋮

𝑆𝐿 𝑟 1

⋱
…

⋮
𝑆𝐿 𝑟 𝑅

 

𝑥 𝑟 1
𝑥 𝑟 2
⋮

𝑥 𝑟 𝑅

+

𝑛1 𝑟 

𝑛2 𝑟 
⋮

𝑛𝐿 𝑟 

 

y(𝒓) = 𝑺(𝒓) 𝒙(𝒓) + 𝒏(𝒓) 
Simultaneous reconstruction of R pixels of the full FOV image 

SENSITIVITY ENCODING IMAGING 

𝑟 𝑗 = 𝑟 + 𝑗
𝐹𝑂𝑉𝑦

𝑅
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SENSE Reconstruction (R=4) 

COMPLEX-VALUED DATA 

𝒚𝑪(𝒓) = 𝑺𝑪 (𝒓) 𝒙𝑪 (𝒓) + 𝒏𝑪(𝒓) 

𝑦𝑅 𝑟 

𝑦𝐼 𝑟 
=

𝑆𝑅 𝑟 −𝑆𝐼 𝑟 

𝑆𝐼 𝑟 𝑆𝐼 𝑟 
 
𝑥𝑅 𝑟 

𝑥𝐼 𝑟 
+

𝑛𝑅 𝑟 

𝑛𝐼 𝑟 
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Reference Image SENSE Reconstruction (R=4) 

SENSE RECONSTRUCTION 

420 



RESULTS AT 1.5 TESLA 

• Artifacts appear for large values of R 

421 



𝛒
ˆ
= 𝐒𝐇𝐒 + λ𝚫

−1
𝐒𝐇𝐝 

Reference Image SENSE Reconstruction (R=4) 

RESULTS AT 3 TESLA FOR R=4 

Artifacts 

• Coronal slice: same effect in the FOV center 
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REGULARIZED SENSE RECONSTRUCTION 
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REGULARIZED SENSE RECONSTRUCTION 
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MR images: sparse in the wavelet domain 

Daubechies’  

2D-wavelet 

Haar’s  

1D-wavelet 

Spatial domain Wavelet domain 

● Improved spatial and frequency artifact localization 
● Simple and accurate statistical model in the wavelet space 

Image histogram Wavelet subband histogram 

Gauss-Laplace pdf 

WAVELETS ENTER INTO THE GAME … 

𝚽∗ 

𝚽 
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WAVELETS ENTER INTO THE GAME … 

426 



PROXIMAL OPERATORS (1/3) 

427 



PROX. OPERATOR: GENERALIZED PROJECTION 

(2/3) 

428 



PROX. OPERATOR: SEPARABLE SUM (3/3) 

429 



PROXIMAL GRADIENT ALGORITHM 

430 



FORWARD BACKWARD OPTIMIZATION 

430-bis 



WAVELET-BASED RESULTS 

[Chaari et al, IEEE ISBI 2008] 
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CONSTRAINED REGULARIZATION 

[Chaari et al, MedIA 2011] 
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CONSTRAINED CONVEX OPTIMIZATION 

[Chaari et al, MedIA 2011] 
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CONSTRAINED WAVELET-BASED RESULTS 

[Chaari et al, MedIA 2011] 
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ANALYSIS & SYNTHESIS REGULARIZED RESULTS 

[Chaari et al, MedIA 2011] 
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ZOOMING 

[Chaari et al, MedIA 2011] 
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[Chaari et al, IEEE ISBI 2011] 

3D REGULARIZATION & RECONSTRUCTION 
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3D REGULARIZATION & RECONSTRUCTION 

[Chaari et al, IEEE ISBI 2011] 
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3D UWR-SENSE SEGMENTATION RESULTS 

[Chaari et al, MAGMA 2014] 
439 



OUTLINE 

Part V: Compressed Sensing in MRI 

440 



COMPRESSED SENSING CONCERN: WHEN  IMAGE 

ACQUISITION MEETS IMAGE RECONSTRUCTION 

441 



COMPRESSED SENSING CONCERN: WHEN  IMAGE 

ACQUISITION MEETS IMAGE RECONSTRUCTION 

442 



COMPRESSED SENSING IN MRI 

iFFT 

K-space 
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COMPRESSED SENSING IN IRM 

 

 

 

 

 

 

 

 

 

 

?? 

?? ?? 

K-space 

• What images? 

• What samples? 

• What reconstruction technique? 

[Lustig et al, MRM 2007] 
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COMPRESSED SENSING RECIPE 

Data is sparse, compressible, redundant… 

Sense the compressed information directly! 

Donoho, Tao, 

Romberg, Candes 

Michael Lustig, http://www.eecs.berkeley.edu/~mlustig/CS.html 
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WHAT SPARSITY AND COMPRESSIBILITY MEAN? 

1. Sparsity/Compressibility 

 

 
Sparse 

(spärs), 

adj. spars•er, spars•est. 

1. Thinly scattered or distributed; not thick

 or dense.  

2. Scanty; meager. 
(http://www.thefreedictionary.com/sparse) 

 

 

 

 

 

 

Compressible  

1. There exists a basis where the 

representation has just a few large 

coefficients and many small coefficients.  

2. Compressible signals are well 

approximated by sparse representations 

(www.healthcare.siemens) 

Angiography image… is sparse is not sparse… 

… but compressible! 

3 levels of 

decomposition 

Wavelet Represensation… is sparse! 

446 

http://www.thefreedictionary.com/sparse
http://www.thefreedictionary.com/sparse


Curvelets 

Starlets, shearlets 

Redundant transforms 

𝜱 induces sparser 

decompositions 𝜶 

COMPRESSED SENSING RECIPE (1/3) 

• Increase sparsity by changing the image decomposition 
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COMPRESSED SENSING THEORY (1/4) 

448 



COMPRESSED SENSING THEORY (2/4) 

449 



COMPRESSED SENSING THEORY (3/4) 

(FISTA algorithm) 450 



COMPRESSED SENSING THEORY (4/4) 

(ADMM algorithm) 451 



THEORETICAL RESULTS (1/2) 

452 



DFT 

DFT 

N
o

n
-u

n
if
o

rm
 s

a
m

p
lin

g
 

2. Pseudo-random sampling 

 

• Non-uniform sampling 

 

FROM UNIFORM RANDOM UNDERSAMPLING TO VDS 

 

 

• Variable Density Sampling 

COHERENT 
FOLDING 

INCOHERENT 
ARTIFACT 

U
n

if
o

rm
 s

a
m

p
lin

g
 

Noise-like 

(Lustig et al. 2007, Chauffert et al. 2013, Puy et al. 2011)  

Lustig et al. 2008 453 



THEORETICAL RESULTS (2/2) 

454 



ILLUSTRATION OF VARIABLE DENSITY SAMPLING  

Shannon 

Wavelets 

455 



FROM THEORY TO PRACTICE 

456 



CS-MRI AND EXISTING RESULTS 

• CS must comply with MR hardware constraints 

 

𝜅 𝑡 = 𝜅 0 + 𝛾 𝐺 𝑢 𝑑𝑢
𝑡

0

 

 

 Regular trajectories 

 

 
• Easy implementation: undersampling standard MR trajectories! 

 

• Radial for cardiac cine MR imaging (Winkelmann et al. 2007) 

• Spiral or noisy spirals (Lustig et al. 2005) 

• Poisson disk sampling (Vasanawala et al. 2011) 

 

𝐺 < 𝐺𝑚𝑎𝑥 ≈ 50 𝑚𝑇𝑚−1 

𝐺 < 𝐺 𝑚𝑎𝑥 ≈ 333 𝑇𝑚−1𝑠−1 

Lustig et al. 2008 

7T MRI 
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CS-MRI AND EXISTING RESULTS 

 

 

 

 

 

Lustig et al. 2007 

 CS is not used to its full potential! 

• Hindered randomness 

• Variable density sampling not fulfilled 

• K-space not well covered or oversampled in one direction 
 

 Undersampling factor generally limited to : R ≤ 10 
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NEED OF NEW MR UNDERSAMPLING SCHEMES 

 New trajectories developed by Nicolas Chauffert during his PhD 

 

• Projection of an image on a measure set of… points (image halftoning) 

 Target 

probability 

density 

  

 Cinematic 

constraints 

 

 Coverage 

speed 

 

 

« Repulsion sampling » 
459 



NEED OF NEW MR UNDERSAMPLING SCHEMES 

 New image approximation techniques 
[Chauffert et al, Construct. Approx., 2016] 

 

• Projection of an image on a measure set of… curves (image stippling) 

 Target 

probability 

density 

  

 Cinematic 

constraints 

 

 Coverage 

speed 
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NEED OF NEW MR UNDERSAMPLING SCHEMES 

 Application to design of k-space trajectories 

 

 Target 

probability 

density 

  

 Gradient 

constraints 

 

 Coverage 

speed 

 

 

Variable Density 

𝐺 < 𝐺𝑚𝑎𝑥 ≈ 50 𝑚𝑇𝑚−1 

𝐺 < 𝐺 𝑚𝑎𝑥 ≈ 333 𝑇𝑚−1𝑠−1 

[Chauffert et al, IEEE TMI 2016; Chauffert et al, SIAM Imaging Sci 2016] 
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NEED OF NEW MR UNDERSAMPLING SCHEMES 

 Application to design of k-space trajectories 

 

• Projection of a target density on a measure set of… admissible curves 

for MRI 

 Target 

probability 

density 

  

 Gradient 

constraints 

 

 Coverage 

speed 

 

 

[Chauffert et al, IEEE TMI 2016; Chauffert et al, SIAM Imaging Sci 2016] 
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