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INTRODUCTION
Since the work of Lustig et al. on Sparse MRI [1], Compressed Sensing (CS) has promised great opportunities to drastically shorten
the acquisition time in MRI by reconstructing images from undersampled Fourier data. Although CS theories provide upper
bounds relating the number of required measurements 𝑚 to the image sparsity and its number of pixels 𝑁 × 𝑁 to guarantee
exact recovery in the noise-free case, in practice (noisy case) it remains unclear to what extent MRI acquisitions can be
accelerated while preserving image quality. More precisely, finding the relationship linking the maximum achievable
undersampling factor 𝑅 = 𝑁2/𝑚 to the image size in a noisy context is still an open question. In this numerical and experimental
study, we propose quantitative hints that may guide CS-MRI users in their choice of an appropriate undersampling factor as a
function of image size and SNR (Signal to Noise Ratio).
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CONCLUSIONS
In practice, our study provides CS-MRI users with quantitative guidance in the maximum undersampling factor that should be used to reach a desired image quality, not only based on
the image size but also on the available SNR in the original fully sampled image. On the one hand, for a constant input SNR, our simulations showed that the larger the image size, the
larger the maximum acceleration factor can be while respecting a targeted image quality. On the other hand, we observed that performances were significantly reduced when the
input SNR was decreasing. However, for a given image size, our simulations showed that there is a minimum SNR above which it is possible to reach the desired quality with the
maximum undersampling factor. In-house experiments performed on an ex-vivo baboon brain with a 7T scanner corroborated these results quantitatively and suggest that our results
could provide classical undersampled MR acquisitions with an upper bound of the maximum usable undersampling factor.

MATERIALS AND METHODS

• 2D brain simulated T2 weighted like images for increasing image sizes (N=128, 256,
512, 1024, 2048) and noise levels characterized by their input SNR, produced by adding
complex Gaussian white noise with varying standard deviation to the Fourier data.

• 𝑆𝑁𝑅 =
𝑆

𝜎
where 𝑆 refers to the mean signal of a ROI taken in the white matter and σ to

the standard deviation in the background signal in the amplitude image.

Which images? 

• Non-Cartesian samples were randomly picked in the Fourier space according to a
variable density [2]

• Acceleration factors (R=5, 10, 20 and 30).

Which 
undersampling? 

• Nonlinear non-Cartesian reconstructions

• redundant wavelet transform from the RICE toolbox [5] 

• NFFT [6]

• FISTA algorithm [3] for solving the penalized CS 𝐿1-minimization
problem with a constant 𝜆 = 10−4

Which 
reconstruction? 

• SSIM [4]: measuring the similarity in structure of image 𝐼 with a full k-space reference image 𝐼0.
(𝑆𝑆𝐼𝑀 𝐼, 𝐼0 = 1 is a perfect match while 𝑆𝑆𝐼𝑀 𝐼, 𝐼0 = 0 is a null correspondence).

• For noise-free case: 𝐼0=fully sampled image with infinite SNR.

• For noisy case: 𝐼0=fully sampled image with high SNR=105.

Which image 
quality metrics?

• T2* weighted Cartesian 2D acquisitions (birdcage 1Tx/1Rx coil) of an ex-vivo brain
baboon with our in-house 7T scanner for N=512 and different SNR (by signal
averaging), resulting in a large set of experimental images 𝐼0(𝑁, 𝑆𝑁𝑅) that we
undersampled and reconstructed following the aforementioned method.

Experimental 
validation

𝐴 = 𝐹𝜓−1 𝑤𝑖𝑡ℎ 𝐹 the Fourier transform 𝑎𝑛𝑑 𝜓 the sparsifying transform
𝑦 ∶ acquired data ; 𝑥 ∶ image ; 𝑧 = 𝜓𝑥 ∶ sparse representation of x ;

𝜆 ∶ regularization parameter
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RESULTS AND DISCUSSION

Figure 2: Image quality for a
constant image size N=512. SSIM
evolution in simulations as a
function of input SNR for
acceleration factors R of 5, 10, 20
and 30 (lines). Experimental
points obtained on ex-vivo brain
baboon on 7T MR scanner (*)
were added to the graph. Circled
experimental points (○) images
are displayed in Fig. 3. The black
dashed line indicates a chosen
SSIM threshold of 0.9.
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Figure 3: Visualization of SSIM
scores for N=512 and input
SNR=56. Reconstructions are
displayed for acceleration
factors R of 5, 10 and 30, along
with their 𝑆𝑆𝐼𝑀 scores. The
reference 𝐼0 was taken as the
fully sampled image of
SNR=105. The orange circle on
𝐼0 indicates a region of visible
quality loss as R increases.

Figure 1: For a constant input SNR=78, evolution of SSIM as a
function of image size N for four acceleration factors R=5
(blue), R=10 (orange), R=20 (yellow) and R=30 (purple). The
black dashed line indicates a chosen SSIM threshold of 0.9.

Influence of image size

 At a fixed acceleration factor, SSIM is increasing with N,
conveying the improvement of image quality.

 Two regimes can be identified (delimited by blue dot-
line on Fig.1): while image quality is stationary for large
image sizes (close to its maximum value of 1), it rapidly
decreases for small decreasing values of N.

 Large acceleration factors are only achievable for large
image sizes.
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Influence of SNR

 For a constant image size, image quality scores are increasing with the input SNR.
 Given a targeted image quality characterized by a certain SSIM threshold (e.g. 0.9

on Fig. 2), only undersampling factors of 5 and 10 should be used for N=512.
Moreover, the desired quality will only be reached if the input SNR is sufficiently
high (𝑆𝑁𝑅 > 40).

 Experimental points (* in Fig. 2) seem to confirm the results obtained on
simulated brain images, especially for R=5. For higher acceleration factors
however (e.g. R=20), experimental scores are slightly larger than in simulations,
especially for high SNR. The distinct natures of the two images and the different
contribution of the black background may explain these variations.

R=20

SSIM=0.86

ACKNOWLEDGMENTS
The authors wish to acknowledge Michel Bottlaender for the use of the ex-vivo baboon brain.


